Two-step hierarchical neural network for classification of dry age-related macular degeneration using optical coherence tomography images.

age-related macular degeneration (AMD) convolutional neural network (CNN) deep learning nascent geographic atrophy (nGA) optical coherence tomography (OCT)

Journal

Frontiers in medicine
ISSN: 2296-858X
Titre abrégé: Front Med (Lausanne)
Pays: Switzerland
ID NLM: 101648047

Informations de publication

Date de publication:
2023
Historique:
received: 12 05 2023
accepted: 03 07 2023
medline: 7 8 2023
pubmed: 7 8 2023
entrez: 7 8 2023
Statut: epublish

Résumé

The aim of this study is to apply deep learning techniques for the development and validation of a system that categorizes various phases of dry age-related macular degeneration (AMD), including nascent geographic atrophy (nGA), through the analysis of optical coherence tomography (OCT) images. A total of 3,401 OCT macular images obtained from 338 patients admitted to Shenyang Aier Eye Hospital in 2019-2021 were collected for the development of the classification model. We adopted a convolutional neural network (CNN) model and introduced hierarchical structure along with image enhancement techniques to train a two-step CNN model to detect and classify normal and three phases of dry AMD: atrophy-associated drusen regression, nGA, and geographic atrophy (GA). Five-fold cross-validation was used to evaluate the performance of the multi-label classification model. Experimental results obtained from five-fold cross-validation with different dry AMD classification models show that the proposed two-step hierarchical model with image enhancement achieves the best classification performance, with a f1-score of 91.32% and a kappa coefficients of 96.09% compared to the state-of-the-art models. The results obtained from the ablation study demonstrate that the proposed method not only improves accuracy across all categories in comparison to a traditional flat CNN model, but also substantially enhances the classification performance of nGA, with an improvement from 66.79 to 81.65%. This study introduces a novel two-step hierarchical deep learning approach in categorizing dry AMD progression phases, and demonstrates its efficacy. The high classification performance suggests its potential for guiding individualized treatment plans for patients with macular degeneration.

Identifiants

pubmed: 37547613
doi: 10.3389/fmed.2023.1221453
pmc: PMC10403700
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1221453

Informations de copyright

Copyright © 2023 Hu, Wu, Lu, Xie, Chen, Yang and Dai.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Biomed Opt Express. 2018 Nov 13;9(12):6205-6221
pubmed: 31065423
Nat Rev Dis Primers. 2021 May 6;7(1):31
pubmed: 33958600
Ophthalmology. 2019 Nov;126(11):1533-1540
pubmed: 31358385
Ophthalmology. 2018 Apr;125(4):537-548
pubmed: 29103793
Acta Ophthalmol. 2022 Mar;100(2):e512-e520
pubmed: 34159761
Lancet. 2018 Sep 29;392(10153):1147-1159
pubmed: 30303083
Sci Rep. 2019 Oct 8;9(1):14454
pubmed: 31595006
Ophthalmology. 2020 Feb;127(2):186-195
pubmed: 31474439
Ophthalmol Retina. 2020 Jun;4(6):568-575
pubmed: 32088159
Graefes Arch Clin Exp Ophthalmol. 2018 Feb;256(2):259-265
pubmed: 29159541
Ophthalmic Surg Lasers Imaging Retina. 2022 Jan;53(1):31-39
pubmed: 34982004
J Digit Imaging. 2022 Oct;35(5):1153-1163
pubmed: 35581408
J Med Syst. 2018 Oct 8;42(11):226
pubmed: 30298337
Surv Ophthalmol. 2003 May-Jun;48(3):257-93
pubmed: 12745003
IEEE Trans Med Imaging. 2016 May;35(5):1299-1312
pubmed: 26978662
Pharmacol Rep. 2006 May-Jun;58(3):353-63
pubmed: 16845209
Opt Lett. 2000 Apr 15;25(8):545-7
pubmed: 18064106
Ophthalmology. 2020 Mar;127(3):394-409
pubmed: 31708275
Ophthalmology. 2011 Jul;118(7):1395-401
pubmed: 21444116
Biomed Opt Express. 2020 Jan 14;11(2):927-944
pubmed: 32133230
Ophthalmology. 2019 Apr;126(4):565-575
pubmed: 30471319
Insights Imaging. 2018 Aug;9(4):611-629
pubmed: 29934920
Lancet Glob Health. 2021 Feb;9(2):e144-e160
pubmed: 33275949

Auteurs

Min Hu (M)

Changsha Aier Eye Hospital, Changsha, China.

Bin Wu (B)

Department of Retina, Shenyang Aier Excellence Eye Hospital, Shenyang, China.

Di Lu (D)

Department of Retina, Shenyang Aier Optometry Hospital, Shenyang, China.

Jing Xie (J)

Changsha Aier Eye Hospital, Changsha, China.

Yiqiang Chen (Y)

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.

Zhikuan Yang (Z)

Aier Institute of Optometry and Vision Science, Changsha, China.

Weiwei Dai (W)

Changsha Aier Eye Hospital, Changsha, China.
Anhui Aier Eye Hospital, Anhui Medical University, Hefei, China.

Classifications MeSH