Movement of protistan trophic groups in soil-plant continuums.
Journal
Environmental microbiology
ISSN: 1462-2920
Titre abrégé: Environ Microbiol
Pays: England
ID NLM: 100883692
Informations de publication
Date de publication:
11 2023
11 2023
Historique:
received:
11
10
2022
accepted:
20
07
2023
medline:
15
11
2023
pubmed:
7
8
2023
entrez:
7
8
2023
Statut:
ppublish
Résumé
Protists, functionally divided into consumers, phototrophs, and parasites act as integral components and vital regulators of microbiomes in soil-plant continuums. However, the drivers of community structure, assembly mechanisms, co-occurrence patterns, and the associations with human pathogens and different protistan trophic groups remain unknown. Here, we characterized the phyllosphere and soil protistan communities associated with three vegetables under different fertilization treatments (none and organic fertilization) at five growth stages. In this study, consumers were the most diverse soil protist group, had the role of inter-kingdom connector, and were the primary biomarker for rhizosphere soils which were subjected to decreasing deterministic processes during plant growth. In contrast, phototrophs had the greatest niche breadth and formed soil protistan hubs, and were the primary biomarkers for both bulk soils and the phyllosphere. Parasites had minimal input to microbial co-occurrence networks. Organic fertilization increased the relative abundance (RA) of pathogenic protists and the number of pathogen-consumer connections in rhizosphere soils but decreased protistan richness and the number of internal protistan links. This study advances our understanding of the ecological roles and potential links between human pathogens and protistan trophic groups associated with soil-plant continuums, which is fundamental to the regulation of soil-plant microbiomes and maintenance of environmental and human health.
Identifiants
pubmed: 37547979
doi: 10.1111/1462-2920.16477
doi:
Substances chimiques
Soil
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2641-2652Informations de copyright
© 2023 Applied Microbiology International and John Wiley & Sons Ltd.
Références
Adl, S.M., Bass, D., Lane, C.E., Lukes, J., Schoch, C.L., Smirnov, A. et al. (2019) Revisions to the classification, nomenclature, and diversity of eukaryotes. The Journal of Eukaryotic Microbiology, 66(1), 4-119.
An, X.L., Wang, J.Y., Pu, Q., Li, H., Pan, T., Li, H.Q. et al. (2020) High-throughput diagnosis of human pathogens and fecal contamination in marine recreational water. Environmental Research, 190, 109982.
Bagchi, R., Gallery, R.E., Gripenberg, S., Gurr, S.J., Narayan, L., Addis, C.E. et al. (2014) Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature, 506, 85-88.
Banerjee, S. & van der Heijden, M.G.A. (2023) Soil microbiomes and one health. Nature Reviews Microbiology, 21(1), 6-20.
Bashir, I., War, A.F., Rafiq, I., Reshi, Z.A., Rashid, I. & Shouche, Y.S. (2022) Phyllosphere microbiome: diversity and functions. Microbiological Research, 254, 126888.
Bates, D.M., Maechler, M., Bolker, B.M. & Walker, S.C. (2017) Package lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-13. Methods in Ecology and Evolution, 4, 133-142.
Bates, S.T., Clemente, J.C., Flores, G.E., Walters, W.A., Parfrey, L.W., Knight, R. et al. (2013) Global biogeography of highly diverse protistan communities in soil. The ISME Journal, 7(3), 652-659.
Beckers, B., Beeck, M.O.D., Weyens, N., Boerjan, W. & Vangronsveld, J. (2017) Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome, 5, 25.
Berg, G., Rybakova, D., Fischer, D., Cernava, T., Verges, M.C., Charles, T. et al. (2020) Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8(1), 1-22.
Bodenhausen, N., Horton, M.W. & Joy, B. (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One, 8(2), e56329.
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A. et al. (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852-857.
Brevik, E.C., Slaughter, L., Singh, B.R., Steffan, J.J., Collier, D., Barnhart, P. et al. (2020) Soil and human health: current status and future needs. Air, Soil and Water Research, 13, 1-23.
Callahan, B.J., Mcmurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A. & Holmes, S.P. (2015) DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-583.
Ceja-Navarro, J.A., Wang, Y., Ning, D., Arellano, A., Ramanculova, L., Yuan, M.M. et al. (2021) Protist diversity and community complexity in the rhizosphere of switchgrass are dynamic as plants develop. Microbiome, 9(1), 96.
Chase, J.M. & Myers, J.A. (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B, 366(1576), 2351-2363.
Chen, B.B., Xiong, W., Qi, J.J., Pan, H.B., Chen, S., Peng, Z.H. et al. (2021) Trophic interrelationships drive the biogeography of protistan community in agricultural ecosystems. Soil Biology and Biochemistry, 163, 108445.
Chen, Q.L., An, X.L., Li, H., Zhu, Y.G., Su, J.Q. & Cui, L. (2017) Do manure-borne or indigenous soil microorganisms influence the spread of antibiotic resistance genes in manured soil? Soil Biology and Biochemistry, 114, 229-237.
Comte, J., Lindstrm, E.S., Eiler, A. & Langenheder, S. (2014) Can marine bacteria be recruited from freshwater sources and the air? The ISME Journal, 8(12), 2423-2430.
Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D. et al. (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541.
Delgado-Baquerizo, M., Reich, P.B., Trivedi, C., Eldridge, D.J., Abades, S., Alfaro, F.D. et al. (2020) Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4(2), 210-220.
Dupont, A.O., Griffiths, R.I., Bell, T. & Bass, D. (2016) Differences in soil micro-eukaryotic communities over soil pH gradients are strongly driven by parasites and saprotrophs. Environmental Microbiology, 18(6), 2010-2024.
Duran, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P. et al. (2018) Microbial interkingdom interactions in roots promote arabidopsis survival. Cell, 175(4), 973-983.e14.
Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 112(8), E911-E920.
Fan, K.K., Delgado-Baquerizo, M., Guo, X.S., Wang, D.Z., Zhu, Y.G. & Chu, H.Y. (2021) Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. The ISME Journal, 15(2), 550-561.
Fiore-Donno, A.M., Richter-Heitmann, T. & Bonkowski, M. (2020) Contrasting responses of protistan plant parasites and phagotrophs to ecosystems, land management and soil properties. Frontiers in Microbiology, 11, 1823.
Fitzpatrick, C.R., Salas-Gonzalez, I., Conway, J.M., Finkel, O.M., Gilbert, S., Russ, D. et al. (2020) The plant microbiome: from ecology to reductionism and beyond. Annual Review of Microbiology, 74, 81-100.
Folkins, M.A., Dey, R. & Ashbolt, N.J. (2020) Interactions between human reovirus and free-living amoebae: implications for enteric virus disinfection and aquatic persistence. Environmental Science & Technology, 54(16), 10201-10206.
Freudenthal, J., Ju, F., Burgmann, H. & Dumack, K. (2022) Microeukaryotic gut parasites in wastewater treatment plants: diversity, activity, and removal. Microbiome, 10(1), 27.
Gao, Z., Karlsson, I., Geisen, S., Kowalchuk, G. & Jousset, A. (2019) Protists: puppet masters of the rhizosphere microbiome. Trends in Plant Science, 24(2), 165-176.
Geisen, S., Koller, R., Hünninghaus, M., Dumack, K., Urich, T. & Bonkowski, M. (2016) The soil food web revisited: diverse and widespread mycophagous soil protists. Soil Biology and Biochemistry, 94, 10-18.
Geisen, S., Mitchell, E.A.D., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F. et al. (2018) Soil protists: a fertile frontier in soil biology research. FEMS Microbiology Reviews, 42(3), 293-323.
Geisen, S., Mitchell, E.A.D., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F. et al. (2018) Soil protists: a fertile frontier in soil biology research. FEMS Microbiology Letters, 42(3), 293-323.
Guimera, R. & Nunes Amaral, L.A. (2005) Functional cartography of complex metabolic networks. Nature, 433, 895-900.
Guo, S., Xiong, W., Hang, X., Gao, Z., Jiao, Z., Liu, H. et al. (2021) Protists as main indicators and determinants of plant performance. Microbiome, 9(1), 64.
Guo, S., Xiong, W., Xu, H., Hang, X., Liu, H., Xun, W. et al. (2018) Continuous application of different fertilizers induces distinct bulk and rhizosphere soil protist communities. European Journal of Soil Biology, 88, 8-14.
Hirt, H. (2020) Healthy soils for healthy plants for healthy humans: how beneficial microbes in the soil, food and gut are interconnected and how agriculture can contribute to human health. EMBO Reports, 21(8), e51069.
Hoque, M.M., Noorian, P., Espinoza-Vergara, G., Manuneedhi Cholan, P., Kim, M., Rahman, M.H. et al. (2022) Adaptation to an amoeba host drives selection of virulence-associated traits in Vibrio cholerae. The ISME Journal, 16(3), 856-867.
Knights, D., Kuczynski, J., Charlson, E.S., Zaneveld, J., Mozer, M.C., Collman, R.G. et al. (2011) Bayesian community-wide culture-independent microbial source tracking. Nature Methods, 8(9), 761-763.
Lambert, B.S., Groussman, R.D., Schatz, M.J., Coesel, S.N., Durham, B.P., Alverson, A.J. et al. (2022) The dynamic trophic architecture of open-ocean protist communities revealed through machine-guided metatranscriptomics. Proceedings of the National Academy of Sciences of the United States of America, 119(7), e2100916119.
Leliaert, F., Smith, D.R., Moreau, H., Herron, M.D., Verbruggen, H., Delwiche, C.F. et al. (2012) Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences, 30(1), 1-46.
Li, W.J., Li, H.Z., An, X.L., Lin, C.S., Li, L.J. & Zhu, Y.G. (2022) Effects of manure fertilization on human pathogens in endosphere of three vegetable plants. Environmental Pollution, 314, 120344.
Mahé, F., de Vargas, C., Bass, D., Czech, L., Stamatakis, A., Lara, E. et al. (2018) Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nature Ecology & Evolution, 1(4), 0091.
Martin, F.M., Uroz, S. & Barker, D.G. (2017) Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science, 356(6340), eaad4501.
Mazel, F., Malard, L., Niculita-Hirzel, H., Yashiro, E., Mod, H.K., Mitchell, E.A.D. et al. (2021) Soil protist function varies with elevation in the Swiss Alps. Environmental Microbiology, 24(4), 1689-1702.
Mitchell, E.A.D. (2015) Pack hunting by a common soil amoeba on nematodes. Environmental Microbiology, 17(11), 4538-4546.
Mo, Y., Zhang, W., Wilkinson, D.M., Yu, Z., Xiao, P. & Yang, J. (2020) Biogeography and co-occurrence patterns of bacterial generalists and specialists in three subtropical marine bays. Limnology and Oceanography, 66(3), 793-806.
Moerman, F., Arquint, A., Merkli, S., Wagner, A., Altermatt, F. & Fronhofer, A.E. (2020) Evolution under pH stress and high population densities leads to increased density-dependent fitness in the protist Tetrahymena thermophila. Evolution, 74(3), 573-586.
Morgan-Ryan, U.M., Fall, A., Ward, L.A., Hijjawi, N., Sulaiman, I., Fayer, R. et al. (2002) Cryptosporidium hominis n. sp. (Apicomplexa: Cryptosporidiidae) from Homo sapiens. The Journal of Eukaryotic Microbiology, 49(6), 433-440.
Muller, D.B., Vogel, C., Bai, Y. & Vorholt, J.A. (2016) The plant microbiota: systems-level insights and perspectives. Annual Review of Genetics, 50, 211-234.
Murase, J., Hida, A., Ogawa, K., Nonoyama, T., Yoshikawa, N. & Imai, K. (2015) Impact of long-term fertilizer treatment on the microeukaryotic community structure of a rice field soil. Soil Biology and Biochemistry, 80, 237-243.
Nilsson, R.H., Larsson, K.H., Taylor, A.F.S., Bengtsson-Palme, J., Jeppesen, T.S., Schigel, D. et al. (2019) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47(D1), D259-D264.
Ning, D., Deng, Y., Tiedje, J.M. & Zhou, J. (2019) A general framework for quantitatively assessing ecological stochasticity. Proceedings of the National Academy of Sciences of the United States of America, 116(34), 16892-16898.
Nisar, M.A., Ross, K.E., Brown, M.H., Bentham, R., Hinds, J. & Whiley, H. (2022) Molecular screening and characterization of Legionella pneumophila associated free-living amoebae in domestic and hospital water systems. Water Research, 226, 119238.
Nuccio, E.E., Starr, E., Karaoz, U., Brodie, E.L., Zhou, J., Tringe, S.G. et al. (2020) Niche differentiation is spatially and temporally regulated in the rhizosphere. The ISME Journal, 14(4), 999-1014.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Minchin, P.R. et al. (2018) R package ‘vegan’ version 2.5-1. Community Ecol Package, Vers. 2, 1-295.
Oliverio, A.M., Geisen, S., Delgado-Baquerizo, M., Maestre, F.T., Turner, B.L. & Fierer, N. (2020) The global-scale distributions of soil protists and their contributions to belowground systems. Science Advances, 6(4), eaax8787.
Park, J.M., Ghosh, S. & O'Connor, T.J. (2020) Combinatorial selection in amoebal hosts drives the evolution of the human pathogen Legionella pneumophila. Nature Microbiology, 5(4), 599-609.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P. et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41, D590-D596.
Ren, P., Sun, A., Jiao, X., Shen, J.P., Yu, D.T., Li, F. et al. (2023) Predatory protists play predominant roles in suppressing soil-borne fungal pathogens under organic fertilization regimes. Science of the Total Environment, 863, 160986.
Revelle, W.R. (2020) psych: procedures for psychological, psychometric, and personality research.
Sanders, R.W. (2022) Protists: flagellates and amoebae. In: Mehner, T. & Tockner, K. (Eds.) Encyclopedia of inland waters, 2nd edition. Oxford: Elsevier, pp. 630-638.
Santos, S.S., Schöler, A., Nielsen, T.K., Hansen, L.H., Schloter, M. & Winding, A. (2020) Land use as a driver for protist community structure in soils under agricultural use across Europe. Science of the Total Environment, 717, 137228.
Schermelleh-Engel, K., Moosbrugger, H. & Müller, H. (2003) Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. MPR Online, 8(8), 23-74.
Schmidt, O., Dyckmans, J. & Schrader, S. (2016) Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates. Biology Letters, 12(1), 20150646.
Schneider, D., Engelhaupt, M., Allen, K., Kurniawan, S., Krashevska, V., Heinemann, M. et al. (2015) Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra (Indonesia). Frontiers in Microbiology, 6, 01339.
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S. et al. (2011) Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60.
Seppey, C.V.W., Singer, D., Dumack, K., Fournier, B., Belbahri, L., Mitchell, E.A.D. et al. (2017) Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling. Soil Biology and Biochemistry, 112, 68-76.
Shi, Y., Delgado-Baquerizo, M., Li, Y., Yang, Y., Zhu, Y.G., Penuelas, J. et al. (2020) Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems. Environment International, 142, 105869.
Shu, L.F., He, Z.Z., Guan, X.T., Yang, X.Q., Tian, Y.H., Zhang, S.Y. et al. (2021) A dormant amoeba species can selectively sense and predate on different soil bacteria. Functional Ecology, 35(8), 1708-1721.
Singer, D., Seppey, C.V.W., Lentendu, G., Dunthorn, M., Bass, D., Belbahri, L. et al. (2021) Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environment International, 146, 106262.
Stoeck, T., Bass, D., Nebel, M., Christen, R. & Richards, T.A. (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Molecular Ecology, 19(1), 21-31.
Sun, A., Jiao, X.Y., Chen, Q., Trivedi, P., Li, Z., Li, F. et al. (2021) Fertilization alters protistan consumers and parasites in crop-associated microbiomes. Environmental Microbiology, 23(4), 2169-2183.
Sun, Y.H. & Luo, Y.M. (2005) Environmental and health risks of pathogens in sewage sludge and their abating approaches. The Soil, 37(5), 474-481.
Thakur, M.P. & Geisen, S. (2019) Trophic regulations of the soil microbiome. Trends in Microbiology, 27(9), 771-780.
Thines, M. (2018) Oomycetes. Current Biology, 28(15), R812-R813.
Triplett, L.R., Taerum, S.J. & Patel, R.R. (2023) Protists at the plant-bacterial interface: impacts and prospective applications. Physiological and Molecular Plant Pathology, 125, 102011.
Trivedi, P., Leach, J.E., Tringe, S.G., Sa, T. & Singh, B.K. (2020) Plant-microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology, 18(11), 607-621.
Wall, D.H., Nielsen, U.N. & Six, J. (2015) Soil biodiversity and human health. Nature, 528(7580), 69-76.
Xiong, W., Jousset, A., Guo, S., Karlsson, I., Zhao, Q., Wu, H. et al. (2018) Soil protist communities form a dynamic hub in the soil microbiome. The ISME Journal, 12(2), 634-638.
Xiong, W., Song, Y., Yang, K., Gu, Y., Wei, Z., Kowalchuk, G.A. et al. (2020) Rhizosphere protists are key determinants of plant health. Microbiome, 8(1), 27.
Yang, K., Chen, Q.L., Chen, M.L., Li, H.Z., Liao, H., Pu, Q. et al. (2020) Temporal dynamics of antibiotic resistome in the plastisphere during microbial colonization. Environmental Science & Technology, 54(18), 11322-11332.
Zhao, Z.B., He, J.Z., Quan, Z., Wu, C.F. & Geisen, S. (2020) Fertilization changes soil microbiome functioning, especially phagotrophic protists. Soil Biology and Biochemistry, 148, 107863.
Zhou, J.Z. & Ning, D.L. (2017) Stochastic community assembly: does it matter in microbial ecology? Microbiology and Molecular Biology Reviews, 81(4), e00002-e00017.