Spatial and temporal variations of vegetation cover and its influencing factors in Shandong Province based on GEE.

Center of gravity migration analysis Fractional vegetation cover (FVC) Geographic detector Spatiotemporal change Trend analysis

Journal

Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350

Informations de publication

Date de publication:
07 Aug 2023
Historique:
received: 28 03 2023
accepted: 29 07 2023
medline: 8 8 2023
pubmed: 7 8 2023
entrez: 7 8 2023
Statut: epublish

Résumé

Economic development has rapidly progressed since the implementation of reform and opening up policies, posing significant challenges to sustainable development, especially to vegetation, which plays a crucial role in maintaining ecosystem service functions and promoting green low-carbon transformations. In this study, we estimated the fractional vegetation cover (FVC) in Shandong Province from 2000 to 2020 using the Google Earth Engine (GEE) platform. The spatial and temporal changes in FVC were analyzed using gravity center migration analysis, trend analysis, and geographic detector, and the vegetation changes of different land use types were analyzed to reveal the internal driving mechanism of FVC changes. Our results indicate that vegetation cover in Shandong Province was in good condition during the period 2000 to 2020. The high vegetation cover classes dominated, and overall changes were relatively small, with the center of gravity of vegetation cover generally shifting towards the southwest. Land use type, soil type, population density, and GDP factors had the most significant impact on vegetation cover change in Shandong Province. The interaction of these factors enhanced the effect on vegetation cover change, with land use type and soil type having the highest degree of influence. The observational results of this study can provide data support for the policy makers to formulate new ecological restoration strategies, and the findings would help facilitate the sustainability management of regional ecosystem and natural resource planning.

Identifiants

pubmed: 37548802
doi: 10.1007/s10661-023-11650-7
pii: 10.1007/s10661-023-11650-7
doi:

Substances chimiques

Soil 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1023

Subventions

Organisme : National Natural Science Foundation of China
ID : 42201077 and 42177453
Organisme : Natural Science Foundation of Shandong Province
ID : ZR2021QD074
Organisme : the MOE Layout Foundation of Humanities and Social Sciences
ID : 17YJAZH013

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Adepoju, K., Adelabu, S., & Fashae, O. (2019). Vegetation response to recent trends in climate and landuse dynamics in a typical humid and dry tropical region under global change. Advances in Meteorology, 2019, 1–15. https://doi.org/10.1155/2019/4946127
doi: 10.1155/2019/4946127
Anees, S. A., Zhang, X., Shakeel, M., Al-Kahtani, M. A., Khan, K. A., Akram, M., et al. (2022). Estimation of fractional vegetation cover dynamics based on satellite remote sensing in pakistan: A comprehensive study on the FVC and its drivers. Journal of King Saud University - Science, 34(3), 101848. https://doi.org/10.1016/j.jksus.2022.101848
doi: 10.1016/j.jksus.2022.101848
Buczyńska, A., Blachowski, J., & Bugajska-Jędraszek, N. (2023). Analysis of post-mining vegetation development using remote sensing and spatial regression approach: A case study of former Babina Mine (Western Poland). Remote Sensing, 15(3), 719. https://doi.org/10.3390/rs15030719
doi: 10.3390/rs15030719
Chakraborty, T., Hsu, A., Manya, D., & Sheriff, G. (2020). A spatially explicit surface urban heat island database for the United States: Characterization, uncertainties, and possible applications. ISPRS Journal of Photogrammetry and Remote Sensing, 168, 74–88. https://doi.org/10.1016/j.isprsjprs.2020.07.021
doi: 10.1016/j.isprsjprs.2020.07.021
Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., et al. (2019). China and India lead in greening of the world through land-use management. Nature Sustainability, 2(2), 122–129. https://doi.org/10.1038/s41893-019-0220-7
doi: 10.1038/s41893-019-0220-7
Chen, S., Zhang, Q., Chen, Y., Zhou, H., Xiang, Y., Liu, Z., et al. (2023). Vegetation change and eco-environmental quality evaluation in the Loess Plateau of China from 2000 to 2020. Remote Sensing, 15(2), 424. https://doi.org/10.3390/rs15020424
doi: 10.3390/rs15020424
Cui, J., Zhu, M., Liang, Y., Qin, G., Li, J., & Liu, Y. (2022). Land use/land cover change and their driving factors in the Yellow River Basin of Shandong Province based on Google Earth Engine from 2000 to 2020. ISPRS International Journal of Geo-Information, 11(3), 163. https://doi.org/10.3390/ijgi11030163
doi: 10.3390/ijgi11030163
Ding, L., Wang, X., Ouyang, Z., Chen, Y., Wang, X., Liu, D., et al. (2021). The occurrence of microplastic in Mu Us Sand Land soils in northwest China: Different soil types, vegetation cover and restoration years. Journal of Hazardous Materials, 403, 123982. https://doi.org/10.1016/j.jhazmat.2020.123982
doi: 10.1016/j.jhazmat.2020.123982
Ding, Y., Zheng, X., Zhao, K., Xin, X., & Liu, H. (2016). Quantifying the impact of NDVIsoil determination methods and NDVIsoil variability on the estimation of fractional vegetation cover in Northeast China. Remote Sensing, 8(1), 29. https://doi.org/10.3390/rs8010029
doi: 10.3390/rs8010029
Fang, X., Shi, X., & Gao, W. (2021). Measuring urban sustainability from the quality of the built environment and pressure on the natural environment in China: A case study of the Shandong Peninsula region. Journal of Cleaner Production, 289, 125145. https://doi.org/10.1016/j.jclepro.2020.125145
doi: 10.1016/j.jclepro.2020.125145
Gao, L., Wang, X., Johnson, B. A., Tian, Q., Wang, Y., Verrelst, J., et al. (2020). Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 364–377. https://doi.org/10.1016/j.isprsjprs.2019.11.018
doi: 10.1016/j.isprsjprs.2019.11.018
Ghosh, S., Kumar, D., & Kumari, R. (2022). Google Earth Engine based computational system for the earth and environment monitoring applications during the COVID-19 pandemic using thresholding technique on SAR datasets. Physics and Chemistry of the Earth, Parts a/b/c, 127, 103163. https://doi.org/10.1016/j.pce.2022.103163
doi: 10.1016/j.pce.2022.103163
Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1), 76–87. https://doi.org/10.1016/S0034-4257(01)00289-9
doi: 10.1016/S0034-4257(01)00289-9
Gong, Z., Zhao, S., & Gu, J. (2017). Correlation analysis between vegetation coverage and climate drought conditions in North China during 2001–2013. Journal of Geographical Sciences, 27, 143–160.
doi: 10.1007/s11442-017-1369-5
Gu, F., Xu, G., Wang, B., Jia, L., & Xu, M. (2023). Vegetation cover change and restoration potential in the Ziwuling Forest Region, China. Ecological Engineering, 187, 106877. https://doi.org/10.1016/j.ecoleng.2022.106877
doi: 10.1016/j.ecoleng.2022.106877
Gutman, G., & Ignatov, A. (1997). Satellite-derived green vegetation fraction for the use in numerical weather prediction models. Advances in Space Research, 19(3), 477–480. https://doi.org/10.1016/S0273-1177(97)00058-6
doi: 10.1016/S0273-1177(97)00058-6
He, L., Guo, J., Jiang, Q., Zhang, Z., & Yu, S. (2022a). How did the Chinese Loess Plateau turn green from 2001 to 2020? An explanation using satellite data. CATENA, 214, 106246. https://doi.org/10.1016/j.catena.2022.106246
doi: 10.1016/j.catena.2022.106246
He, P., Xu, L., Liu, Z., Jing, Y., & Zhu, W. (2021). Dynamics of NDVI and its influencing factors in the Chinese Loess Plateau during 2002–2018. Regional Sustainability, 2(1), 36–46. https://doi.org/10.1016/j.regsus.2021.01.002
doi: 10.1016/j.regsus.2021.01.002
He, Y., Wang, L., Niu, Z., & Nath, B. (2022b). Vegetation recovery and recent degradation in different karst landforms of southwest China over the past two decades using GEE satellite archives. Ecological Informatics, 68, 101555. https://doi.org/10.1016/j.ecoinf.2022.101555
doi: 10.1016/j.ecoinf.2022.101555
Holben, B. N. (1986). Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing, 7(11), 1417–1434. https://doi.org/10.1080/01431168608948945
doi: 10.1080/01431168608948945
Huang, L., Wang, J., & Chen, X. (2022). Ecological infrastructure planning of large river basin to promote nature conservation and ecosystem functions. Journal of Environmental Management, 306, 114482. https://doi.org/10.1016/j.jenvman.2022.114482
doi: 10.1016/j.jenvman.2022.114482
Huang, N., Wang, L., Song, X.-P., Black, T. A., Jassal, R. S., Myneni, R. B., et al. (2020). Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Science Advances, 6(41), abb8508. https://doi.org/10.1126/sciadv.abb8508
doi: 10.1126/sciadv.abb8508
Hussien, K., Kebede, A., Mekuriaw, A., Beza, S. A., & Erena, S. H. (2023). Spatiotemporal trends of NDVI and its response to climate variability in the Abbay River Basin, Ethiopia. Heliyon, 9, e14113. https://doi.org/10.1016/j.heliyon.2023.e14113
doi: 10.1016/j.heliyon.2023.e14113
Ichii, K., Kawabata, A., & Yamaguchi, Y. (2002). Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990. International Journal of Remote Sensing, 23(18), 3873–3878. https://doi.org/10.1080/01431160110119416
doi: 10.1080/01431160110119416
Jing, X., Yao, W., Wang, J., & Song, X. (2011). A study on the relationship between dynamic change of vegetation coverage and precipitation in Beijing’s mountainous areas during the last 20 years. Mathematical and Computer Modelling, 54(3), 1079–1085. https://doi.org/10.1016/j.mcm.2010.11.038
doi: 10.1016/j.mcm.2010.11.038
Li, S., Dragicevic, S., Castro, F. A., Sester, M., Winter, S., Coltekin, A., et al. (2016). Geospatial big data handling theory and methods: A review and research challenges. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 119–133. https://doi.org/10.1016/j.isprsjprs.2015.10.012
doi: 10.1016/j.isprsjprs.2015.10.012
Li, X., Zulkar, H., Wang, D., Zhao, T., & Xu, W. (2022). Changes in vegetation coverage and migration characteristics of center of gravity in the arid desert region of Northwest China in 30 recent years. Land, 11(10), 1688. https://doi.org/10.3390/land11101688
doi: 10.3390/land11101688
Li, Y., Shu, B., Shi, X., & Zhu, Y. (2017). Variation of land-expropriated farmers’ willingness: A perspective of employment and inhabitance. Sustainability, 9(7), 1083. https://doi.org/10.3390/su9071083
doi: 10.3390/su9071083
Liu, C., Li, W., Zhu, G., Zhou, H., Yan, H., & Xue, P. (2020a). Land use/land cover changes and their driving factors in the Northeastern Tibetan Plateau based on Geographical Detectors and Google Earth Engine: A case study in Gannan Prefecture. Remote Sensing, 12(19), 3139. https://doi.org/10.3390/rs12193139
doi: 10.3390/rs12193139
Liu, C., Zhang, X., Wang, T., Chen, G., Zhu, K., Wang, Q., et al. (2022a). Detection of vegetation coverage changes in the Yellow River Basin from 2003 to 2020. Ecological Indicators, 138, 108818. https://doi.org/10.1016/j.ecolind.2022.108818
doi: 10.1016/j.ecolind.2022.108818
Liu, G., Shao, Q., Fan, J., Huang, H., Liu, J., & He, J. (2023). Assessment of restoration degree and restoration potential of key ecosystem-regulating services in the three-river headwaters region based on vegetation coverage. Remote Sensing, 15(2), 523. https://doi.org/10.3390/rs15020523
doi: 10.3390/rs15020523
Liu, H., Chen, M., Chen, H., Li, Y., Xie, C., Tian, B., et al. (2022b). Remote sensing extraction of agricultural land in Shandong Province, China, from 2016 to 2020 based on Google Earth Engine. Remote Sensing, 14(22), 5672. https://doi.org/10.3390/rs14225672
doi: 10.3390/rs14225672
Liu, J., Wen, Z., & Gang, C. (2020b). Normalized difference vegetation index of different vegetation cover types and its responses to climate change in the Loess Plateau. Acta Ecologica Sinica, 40(2), 678–691.
Niu, L., Shao, Q., Ning, J., Yang, X., Liu, S., Liu, G., et al. (2023). Evaluation on the degree and potential of ecological restoration in Loess Plateau. Journal of Natural Resources, 38(03), 779–794.
doi: 10.31497/zrzyxb.20230314
Okin, G. S., Clarke, K. D., & Lewis, M. M. (2013). Comparison of methods for estimation of absolute vegetation and soil fractional cover using MODIS normalized BRDF-adjusted reflectance data. Remote Sensing of Environment, 130, 266–279. https://doi.org/10.1016/j.rse.2012.11.021
doi: 10.1016/j.rse.2012.11.021
Shen, W., Zhang, J., Wang, K., & Zhang, Z. (2023). Identifying the spatio-temporal dynamics of regional ecological risk based on Google Earth Engine: A case study from Loess Plateau, China. Science of the Total Environment, 873, 162346. https://doi.org/10.1016/j.scitotenv.2023.162346
doi: 10.1016/j.scitotenv.2023.162346
Song, W., Deng, X., Liu, B., Li, Z., & Jin, G. (2015). Impacts of grain-for-green and grain-for-blue policies on valued ecosystem services in Shandong Province, China. Advances in Meteorology. https://doi.org/10.1155/2015/213534
doi: 10.1155/2015/213534
Sun, Y., Shan, M., Pei, X., Zhang, X., & Yang, Y. (2020). Assessment of the impacts of climate change and human activities on vegetation cover change in the Haihe River basin, China. Physics and Chemistry of the Earth, Parts a/b/c, 115, 102834. https://doi.org/10.1016/j.pce.2019.102834
doi: 10.1016/j.pce.2019.102834
Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001
doi: 10.1016/j.isprsjprs.2020.04.001
Testa, S., Soudani, K., Boschetti, L., & Borgogno Mondino, E. (2018). MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests. International Journal of Applied Earth Observation and Geoinformation, 64, 132–144. https://doi.org/10.1016/j.jag.2017.08.006
doi: 10.1016/j.jag.2017.08.006
Tong, S., Zhang, J., Ha, S., Lai, Q., & Ma, Q. (2016). Dynamics of fractional vegetation coverage and its relationship with climate and human activities in Inner Mongolia, China. Remote Sensing, 8(9), 776. https://doi.org/10.3390/rs8090776
doi: 10.3390/rs8090776
Verrelst, J., Muñoz, J., Alonso, L., Delegido, J., Rivera, J. P., Camps-Valls, G., et al. (2012). Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and-3. Remote Sensing of Environment, 118, 127–139. https://doi.org/10.1016/j.rse.2011.11.002
doi: 10.1016/j.rse.2011.11.002
Wang, J., & Xu, C. (2017). Geodetector: Principle and prospective. Acta Geographica Sinica, 72(1), 116–134.  https://doi.org/10.11821/dlxb201701010
Wang, J., Zhang, T., & Fu, B. (2016). A measure of spatial stratified heterogeneity. Ecological Indicators, 67, 250–256. https://doi.org/10.1016/j.ecolind.2016.02.052
doi: 10.1016/j.ecolind.2016.02.052
Wang, Z., Zhang, T., Pei, C., Zhao, X., Li, Y., Hu, S., et al. (2022). Multisource remote sensing monitoring and analysis of the driving forces of vegetation restoration in the Mu Us Sandy Land. Land, 11(9), 1553. https://doi.org/10.3390/land11091553
doi: 10.3390/land11091553
Wu, D., Wu, H., Zhao, X., Zhou, T., Tang, B., Zhao, W., et al. (2014). Evaluation of spatiotemporal variations of global fractional vegetation cover based on GIMMS NDVI data from 1982 to 2011. Remote Sensing, 6(5), 4217–4239. https://doi.org/10.3390/rs6054217
doi: 10.3390/rs6054217
Xiao, H., Guo, Y., Wang, Y., Xu, Y., & Liu, D. (2022). Evaluation and construction of regional ecological network based on multi-objective optimization: A perspective of mountains–rivers–forests–farmlands–lakes–grasslands life community concept in China. Applied Sciences, 12(19), 9600. https://doi.org/10.3390/app12199600
doi: 10.3390/app12199600
Yan, K., Gao, S., Chi, H., Qi, J., Song, W., Tong, Y., et al. (2022). Evaluation of the vegetation-index-based dimidiate pixel model for fractional vegetation cover estimation. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14. https://doi.org/10.1109/TGRS.2020.3048493
doi: 10.1109/TGRS.2020.3048493
Zeng, X., Dickinson, R. E., Walker, A., Shaikh, M., DeFries, R. S., & Qi, J. (2000). Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. Journal of Applied Meteorology, 39(6), 826–839. https://doi.org/10.1175/1520-0450(2000)039%3C0826:DAEOGK%3E2.0.CO;2
Zhang, D., Jia, Q., Xu, X., Yao, S., Chen, H., & Hou, X. (2018). Contribution of ecological policies to vegetation restoration: A case study from Wuqi County in Shaanxi Province, China. Land Use Policy, 73, 400–411. https://doi.org/10.1016/j.landusepol.2018.02.020
doi: 10.1016/j.landusepol.2018.02.020
Zhang, M., Lin, H., Long, X., & Cai, Y. (2021). Analyzing the spatiotemporal pattern and driving factors of wetland vegetation changes using 2000–2019 time-series Landsat data. Science of the Total Environment, 780, 146615. https://doi.org/10.1016/j.scitotenv.2021.146615
doi: 10.1016/j.scitotenv.2021.146615
Zhang, X., Song, J., Wang, Y., Sun, H., & Li, Q. (2022a). Threshold effects of vegetation coverage on runoff and soil loss in the Loess Plateau of China: A meta-analysis. Geoderma, 412, 115720. https://doi.org/10.1016/j.geoderma.2022.115720
doi: 10.1016/j.geoderma.2022.115720
Zhang, Z., Hao, M., Li, Y., Shao, Z., Yu, Q., He, Y., et al. (2022b). Effects of vegetation and terrain changes on spatial heterogeneity of soil C-N–P in the coastal zone protected forests at northern China. Journal of Environmental Management, 317, 115472. https://doi.org/10.1016/j.jenvman.2022.115472
doi: 10.1016/j.jenvman.2022.115472
Zhou, X., Wu, D., Li, J., Liang, J., Zhang, D., & Chen, W. (2022). Cultivated land use efficiency and its driving factors in the Yellow River Basin, China. Ecological Indicators, 144, 109411. https://doi.org/10.1016/j.ecolind.2022.109411
doi: 10.1016/j.ecolind.2022.109411
Zhou, Z., Ding, Y., Shi, H., Cai, H., Fu, Q., Liu, S., et al. (2020). Analysis and prediction of vegetation dynamic changes in China: Past, present and future. Ecological Indicators, 117, 106642. https://doi.org/10.1016/j.ecolind.2020.106642
doi: 10.1016/j.ecolind.2020.106642
Zuo, Y., Li, Y., He, K., & Wen, Y. (2022). Temporal and spatial variation characteristics of vegetation coverage and quantitative analysis of its potential driving forces in the Qilian Mountains, China, 2000–2020. Ecological Indicators, 143, 109429. https://doi.org/10.1016/j.ecolind.2022.109429
doi: 10.1016/j.ecolind.2022.109429

Auteurs

Hao Dong (H)

School of Surveying and Geo-Informatics, Shandong Jianzhu University, No. 1000, Fengming Road, Licheng District, Jinan, 250101, China.

Yaohui Liu (Y)

School of Surveying and Geo-Informatics, Shandong Jianzhu University, No. 1000, Fengming Road, Licheng District, Jinan, 250101, China.

Jian Cui (J)

School of Surveying and Geo-Informatics, Shandong Jianzhu University, No. 1000, Fengming Road, Licheng District, Jinan, 250101, China. shanjia@sdjzu.edu.cn.

Mingshui Zhu (M)

Ji'nan Institute of Survey and Investigation, Jinan, 250101, China.

Wenxin Ji (W)

School of Surveying and Geo-Informatics, Shandong Jianzhu University, No. 1000, Fengming Road, Licheng District, Jinan, 250101, China.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Humans Neoplasms Male Female Middle Aged
Humans Male Female Aged Middle Aged

Classifications MeSH