Exploring behavioral adjustments of proportion congruency manipulations in an Eriksen flanker task with visual and auditory distractor modalities.

Cognitive control Conflict tasks Congruency effects Cross modal Delta plots Eriksen flanker Multimodal

Journal

Memory & cognition
ISSN: 1532-5946
Titre abrégé: Mem Cognit
Pays: United States
ID NLM: 0357443

Informations de publication

Date de publication:
07 Aug 2023
Historique:
accepted: 07 07 2023
medline: 7 8 2023
pubmed: 7 8 2023
entrez: 7 8 2023
Statut: aheadofprint

Résumé

The present study investigated global behavioral adaptation effects to conflict arising from different distractor modalities. Three experiments were conducted using an Eriksen flanker paradigm with constant visual targets, but randomly varying auditory or visual distractors. In Experiment 1, the proportion of congruent to incongruent trials was varied for both distractor modalities, whereas in Experiments 2A and 2B, this proportion congruency (PC) manipulation was applied to trials with one distractor modality (inducer) to test potential behavioral transfer effects to trials with the other distractor modality (diagnostic). In all experiments, mean proportion congruency effects (PCEs) were present in trials with a PC manipulation, but there was no evidence of transfer to diagnostic trials in Experiments 2A and 2B. Distributional analyses (delta plots) provided further evidence for distractor modality-specific global behavioral adaptations by showing differences in the slope of delta plots with visual but not auditory distractors when increasing the ratio of congruent trials. Thus, it is suggested that distractor modalities constrain global behavioral adaptation effects due to the learning of modality-specific memory traces (e.g., distractor-target associations) and/or the modality-specific cognitive control processes (e.g., suppression of modality-specific distractor-based activation). Moreover, additional analyses revealed partial transfer of the congruency sequence effect across trials with different distractor modalities suggesting that distractor modality may differentially affect local and global behavioral adaptations.

Identifiants

pubmed: 37548866
doi: 10.3758/s13421-023-01447-x
pii: 10.3758/s13421-023-01447-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Baden-Württemberg Stiftung
ID : Eliteprogramme for Postdocs

Informations de copyright

© 2023. The Author(s).

Références

Abrahamse, E. L., Duthoo, W., Notebaert, W., & Risko, E. F. (2013). Attention modulation by proportion congruency: The asymmetrical list shifting effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(5), 1552–1562. https://doi.org/10.1037/a0032426
doi: 10.1037/a0032426 pubmed: 23565794
Amer, T., Campbell, K. L., & Hasher, L. (2016). Cognitive control as a double-edged sword. Trends in Cognitive Sciences, 20(12), 905–915. https://doi.org/10.1016/j.tics.2016.10.002
doi: 10.1016/j.tics.2016.10.002 pubmed: 27863886
Baciero, A., Uribe, I., & Gomez, P. (2021). The tactile Eriksen flanker effect: A time course analysis. Attention, Perception, & Psychophysics, 83(4), 1424–1434. https://doi.org/10.3758/s13414-020-02172-2
doi: 10.3758/s13414-020-02172-2
Bausenhart, K. M., Ulrich, R., & Miller, J. (2021). Effects of conflict trial proportion: A comparison of the Eriksen and Simon tasks. Attention, Perception, & Psychophysics, 83(2), 810–836. https://doi.org/10.3758/s13414-020-02164-2
doi: 10.3758/s13414-020-02164-2
Bendixen, A., Grimm, S., Deouell, L. Y., Wetzel, N., Mädebach, A., & Schröger, E. (2010). The time-course of auditory and visual distraction effects in a new crossmodal paradigm. Neuropsychologia, 48(7), 2130–2139. https://doi.org/10.1016/j.neuropsychologia.2010.04.004
doi: 10.1016/j.neuropsychologia.2010.04.004 pubmed: 20385149
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652. https://doi.org/10.1037/0033-295X.108.3.624
doi: 10.1037/0033-295X.108.3.624 pubmed: 11488380
Braem, S., Abrahamse, E. L., Duthoo, W., & Notebaert, W. (2014). What determines the specificity of conflict adaptation? A review, critical analysis, and proposed synthesis. Frontiers in Psychology, 5(1134), 1–13. https://doi.org/10.3389/fpsyg.2014.01134
doi: 10.3389/fpsyg.2014.01134
Braem, S., Bugg, J. M., Schmidt, J. R., Crump, M. J., Weissman, D. H., Notebaert, W., & Egner, T. (2019). Measuring adaptive control in conflict tasks. Trends in Cognitive Sciences, 23(9), 769–783. https://doi.org/10.1016/j.tics.2019.07.002
doi: 10.1016/j.tics.2019.07.002 pubmed: 31331794 pmcid: 6699878
Bresciani, J.-P., Dammeier, F., & Ernst, M. O. (2008). Tri-modal integration of visual, tactile and auditory signals for the perception of sequences of events. Brain Research Bulletin, 75(6), 753–760. https://doi.org/10.1016/j.brainresbull.2008.01.009
doi: 10.1016/j.brainresbull.2008.01.009 pubmed: 18394521
Bugg, J. M. (2014). Conflict-triggered top-down control: Default mode, last resort, or no such thing? Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(2), 567–587. https://doi.org/10.1037/a0035032
doi: 10.1037/a0035032 pubmed: 24274385
Bugg, J. M., & Crump, M. J. (2012). In support of a distinction between voluntary and stimulus-driven control: A review of the literature on proportion congruent effects. Frontiers in Psychology, 3(367), 1–16. https://doi.org/10.3389/fpsyg.2012.00367
doi: 10.3389/fpsyg.2012.00367
Chan, J. S., Merrifield, K., & Spence, C. (2005). Auditory spatial attention assessed in a flanker interference task. Acta Acustica United With Acustica, 91(3), 554–563.
Chen, J., Tan, L., Liu, L., & Wang, L. (2021). Reinforcement learning of irrelevant stimulus–response associations modulates cognitive control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 47(10), 1585–1598. https://doi.org/10.1037/xlm0000850
doi: 10.1037/xlm0000850 pubmed: 32324022
Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104(2), 163–191. https://doi.org/10.1037/0033-2909.104.2.163
doi: 10.1037/0033-2909.104.2.163 pubmed: 3054993
Cohen-Shikora, E. R., Suh, J., & Bugg, J. M. (2019). Assessing the temporal learning account of the list-wide proportion congruence effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(9), 1703–1723. https://doi.org/10.1037/xlm0000670
doi: 10.1037/xlm0000670 pubmed: 30589332
De Jong, R., Liang, C.-C., & Lauber, E. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus–response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 731–750. https://doi.org/10.1037/0096-1523.20.4.731
doi: 10.1037/0096-1523.20.4.731 pubmed: 8083631
De Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral experiments in a Web browser. Behavior Research Methods, 47(1), 1–12. https://doi.org/10.3758/s13428-014-0458-y
doi: 10.3758/s13428-014-0458-y pubmed: 24683129
Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 380–390. https://doi.org/10.3758/cabn.7.4.380
doi: 10.3758/cabn.7.4.380
Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8(12), 1784–1790. https://doi.org/10.1038/nn1594
doi: 10.1038/nn1594 pubmed: 16286928
Eimer, M., Hommel, B., & Prinz, W. (1995). SR compatibility and response selection. Acta Psychologica, 90, 301–313. https://doi.org/10.1016/0001-6918(95)00022-M
doi: 10.1016/0001-6918(95)00022-M
Ellinghaus, R., Karlbauer, M., Bausenhart, K. M., & Ulrich, R. (2018). On the time-course of automatic response activation in the Simon task. Psychological Research, 82(4), 734–743. https://doi.org/10.1007/s00426-017-0860-z
doi: 10.1007/s00426-017-0860-z pubmed: 28389812
Ellinghaus, R., Liepelt, R., Mackenzie, I. G., & Mittelstädt, V. (2023). Distractor activation in conflict tasks is transient rather than permanent. Manuscript under review.
Ellinghaus, R., & Miller, J. (2018). Delta plots with negative-going slopes as a potential marker of decreasing response activation in masked semantic priming. Psychological Research, 82(3), 590–599. https://doi.org/10.1007/s00426-017-0844-z
doi: 10.1007/s00426-017-0844-z pubmed: 28251371
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149. https://doi.org/10.3758/BF03203267
doi: 10.3758/BF03203267
Eriksen, C. W., & Schultz, D. W. (1979). Information processing in visual search: A continuous flow conception and experimental results. Perception & Psychophysics, 25(4), 249–263. https://doi.org/10.3758/bf03198804
doi: 10.3758/bf03198804
Falchier, A., Clavagnier, S., Barone, P., & Kennedy, H. (2002). Anatomical evidence of multimodal integration in primate striate cortex. Journal of Neuroscience, 22(13), 5749–5759. https://doi.org/10.1523/JNEUROSCI.22-13-05749.2002
doi: 10.1523/JNEUROSCI.22-13-05749.2002 pubmed: 12097528
Fischer, R., Dreisbach, G., & Goschke, T. (2008). Context-sensitive adjustments of cognitive control: Conflict-adaptation effects are modulated by processing demands of the ongoing task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(3), 712–718. 0278-7393.34.3.712
pubmed: 18444768
Forster, S. E., Carter, C. S., Cohen, J. D., & Cho, R. Y. (2011). Parametric manipulation of the conflict signal and control-state adaptation. Journal of Cognitive Neuroscience, 23(4), 923–935. https://doi.org/10.1162/jocn.2010.21458
doi: 10.1162/jocn.2010.21458 pubmed: 20146615
Frings, C., Hommel, B., Koch, I., Rothermund, K., Dignath, D., Giesen, C., Kiesel, A., Kunde, W., Mayer, S., Moller, B., Möller, M., Pfister, R., & Philipp, A. (2020). Binding and retrieval in action control (BRAC). Trends in Cognitive Sciences, 24(5), 375–387. https://doi.org/10.1016/j.tics.2020.02.004
doi: 10.1016/j.tics.2020.02.004 pubmed: 32298623
Frings, C., & Spence, C. (2010). Crossmodal congruency effects based on stimulus identity. Brain Research, 1354, 113–122. https://doi.org/10.1016/j.brainres.2010.07.058
doi: 10.1016/j.brainres.2010.07.058 pubmed: 20674555
Fu, D., Weber, C., Yang, G., Kerzel, M., Nan, W., Barros, P., Wu, H., Liu, X., & Wermter, S. (2020). What can computational models learn from human selective attention? A review from an audiovisual unimodal and crossmodal perspective. Frontiers in Integrative Neuroscience, 14(10). https://doi.org/10.3389/fnint.2020.00010
Funes, M. J., Lupiáñez, J., & Humphreys, G. (2010). Sustained versus transient cognitive control: Evidence of a behavioral dissociation. Cognition, 114(3), 338–347. https://doi.org/10.1016/j.cognition.2009.10.007
doi: 10.1016/j.cognition.2009.10.007 pubmed: 19962136
Gade, M., Paelecke, M., & Rey-Mermet, A. (2020). Simon Says—On the influence of stimulus arrangement, stimulus material and inner speech habits on the Simon effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(7), 1349–1363. https://doi.org/10.1037/xlm0000789
doi: 10.1037/xlm0000789 pubmed: 31750724
Grant, L. D., Cookson, S. L., & Weissman, D. H. (2020). Task sets serve as boundaries for the congruency sequence effect. Journal of Experimental Psychology: Human Perception and Performance, 46(8), 798–812. https://doi.org/10.1037/xhp0000750
doi: 10.1037/xhp0000750 pubmed: 32324028
Grant, L. D., & Weissman, D. H. (2022). The binary structure of event files generalizes to abstract features: A nonhierarchical explanation of task set boundaries for the congruency sequence effect. Journal of Experimental Psychology: Learning, Memory, and Cognition. Advance online publication. https://doi.org/10.1037/xlm0001148
Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121(4), 480–506. https://doi.org/10.1037//0096-3445.121.4.480
doi: 10.1037//0096-3445.121.4.480 pubmed: 1431740
Hasher, L., Zacks, R. T., & May, C. P. (1999). Inhibitory control, circadian arousal, and age. In D. Gopher & A. Koriat (Eds.), Attention and performance XVII: Cognitive regulation of performance: Interaction of theory and application (pp. 653–675). MIT Press.
Hazeltine, E., Lightman, E., Schwarb, H., & Schumacher, E. H. (2011). The boundaries of sequential modulations: Evidence for set-level control. Journal of Experimental Psychology: Human Perception and Performance, 37(6), 1898–1914. https://doi.org/10.1037/a0024662
doi: 10.1037/a0024662 pubmed: 21767054
Heuer, H., Seegelke, C., & Wühr, P. (2023). Staggered onsets of processing relevant and irrelevant stimulus features produce different dynamics of congruency effects. Journal of Cognition, 6(1), 8. https://doi.org/10.5334/joc.252
doi: 10.5334/joc.252 pubmed: 36698783 pmcid: 9838228
Hommel, B. (2004). Event files: Feature binding in and across perception and action. Trends in Cognitive Sciences, 8(11), 494–500. https://doi.org/10.1016/j.tics.2004.08.007
doi: 10.1016/j.tics.2004.08.007 pubmed: 15491903
Hommel, B., Proctor, R. W., & Vu, K.-P.L. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68(1), 1–17. https://doi.org/10.1007/s00426-003-0132-y
doi: 10.1007/s00426-003-0132-y pubmed: 14752663
Hübner, R., Steinhauser, M., & Lehle, C. (2010). A dual-stage two-phase model of selective attention. Psychological Review, 117(3), 759–784. https://doi.org/10.1037/a0019471
doi: 10.1037/a0019471 pubmed: 20658852
Hübner, R., & Töbel, L. (2019). Conflict resolution in the Eriksen flanker task: Similarities and differences to the Simon task. PLOS ONE, 14(3), e0214203. https://doi.org/10.1371/journal.pone.0214203
doi: 10.1371/journal.pone.0214203 pubmed: 30921368 pmcid: 6438467
Jacoby, L., Lindsay, S., & Hessels, S. (2003). Item-specific control of automatic processes: Stroop process dissociations. Psychonomic Bulletin & Review, 10(3), 638–644. https://doi.org/10.3758/bf03196526
doi: 10.3758/bf03196526
Jain, A., Bansal, R., Kumar, A., & Singh, K. D. (2015). A comparative study of visual and auditory reaction times on the basis of gender and physical activity levels of medical first year students. International Journal of Applied and Basic Medical Research, 5(2), 124. https://doi.org/10.4103/2229-516x.157168
doi: 10.4103/2229-516x.157168 pubmed: 26097821 pmcid: 4456887
Jiang, J., Brashier, N. M., & Egner, T. (2015). Memory meets control in hippocampal and striatal binding of stimuli, responses, and attentional control states. Journal of Neuroscience, 35, 14885–14895. https://doi.org/10.1523/JNEUROSCI.2957-15.2015
doi: 10.1523/JNEUROSCI.2957-15.2015 pubmed: 26538657
Jost, K., Wendt, M., Luna‐Rodriguez, A., & Jacobsen, T. (2022). Electrophysiological correlates of proportion congruency manipulation in a temporal flanker task. Psychophysiology, e14092. https://doi.org/10.1111/psyp.14092
Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus–response compatibility—A model and taxonomy. Psychological Review, 97(2), 253–270. https://doi.org/10.1037/0033-295x.97.2.253
doi: 10.1037/0033-295x.97.2.253 pubmed: 2186425
Kreutzfeldt, M., Stephan, D. N., Sturm, W., Willmes, K., & Koch, I. (2015). The role of crossmodal competition and dimensional overlap in crossmodal attention switching. Acta Psychologica, 155, 67–76. https://doi.org/10.1016/j.actpsy.2014.12.006
doi: 10.1016/j.actpsy.2014.12.006 pubmed: 25577489
Kreutzfeldt, M., Stephan, D. N., Willmes, K., & Koch, I. (2016). Shifts in target modality cause attentional reset: Evidence from sequential modulation of crossmodal congruency effects. Psychonomic Bulletin & Review, 23, 1466–1473. https://doi.org/10.3758/s13423-016-1001-1
doi: 10.3758/s13423-016-1001-1
Lavie, N. (2010). Attention, distraction, and cognitive control under load. Current Directions in Psychological Science, 19(3), 143–148. https://doi.org/10.1177/0963721410370295
doi: 10.1177/0963721410370295
Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133(3), 339–354. https://doi.org/10.1037/0096-3445.133.3.339
doi: 10.1037/0096-3445.133.3.339 pubmed: 15355143
Li, Z., Yang, G., Wu, H., Li, Q., Xu, H., Goeschl, F., Nolte, G., & Liu, X. (2021). Modality-specific neural mechanisms of cognitive control in a Stroop-like task. Brain and Cognition, 147, 105662. https://doi.org/10.1016/j.bandc.2020.105662
doi: 10.1016/j.bandc.2020.105662 pubmed: 33360042
Logan, G. D., & Zbrodoff, N. J. (1979). When it helps to be misled: Facilitative effects of increasing the frequency of conflicting stimuli in a Stroop-like task. Memory & Cognition, 7(3), 166–174. https://doi.org/10.3758/BF03197535
doi: 10.3758/BF03197535
Lukas, S., Philipp, A. M., & Koch, I. (2010). Switching attention between modalities: Further evidence for visual dominance. Psychological Research, 74, 255–267. https://doi.org/10.1007/s00426-009-0246-y
doi: 10.1007/s00426-009-0246-y pubmed: 19517132
Luo, J., Yang, M., & Wang, L. (2022). Learned irrelevant stimulus–response associations and proportion congruency effect: A diffusion model account. Journal of Experimental Psychology: Learning, Memory, and Cognition. https://doi.org/10.1037/xlm0001158
doi: 10.1037/xlm0001158 pubmed: 36006727
Mackenzie, I. G., & Dudschig, C. (2021). DMCfun: An R package for fitting diffusion model of conflict (DMC) to reaction time and error rate data. Methods in Psychology, 5, 100074. https://doi.org/10.1016/j.metip.2021.100074
doi: 10.1016/j.metip.2021.100074
Mackenzie, I. G., Mittelstädt, V., Ulrich, R., & Leuthold, H. (2022). The role of temporal order of relevant and irrelevant dimensions within conflict tasks. Journal of Experimental Psychology: Human Perception and Performance, 1099–1115. https://doi.org/10.1037/xhp0001032
Mattler, U. (2005). Flanker effects on motor output and the late-level response activation hypothesis. The Quarterly Journal of Experimental Psychology Section A, 58(4), 577–601. https://doi.org/10.1080/02724980443000089
doi: 10.1080/02724980443000089
Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6(5), 450–452. https://doi.org/10.1038/nn1051
doi: 10.1038/nn1051 pubmed: 12704394
Miller, R., Schmidt, K., Kirschbaum, C., & Enge, S. (2018). Comparability, stability, and reliability of internet-based mental chronometry in domestic and laboratory settings. Behavior Research Methods, 50, 1345–1358. https://doi.org/10.3758/s13428-018-1036-5
doi: 10.3758/s13428-018-1036-5 pubmed: 29546596
Mittelstädt, V., Leuthold, H., & Mackenzie, I. G. (2022a). Motor demands influence conflict processing in a mouse-tracking Simon task. Psychological Research, 1–16. https://doi.org/10.1007/s00426-022-01755-y
Mittelstädt, V., & Miller, J. (2018). Redundancy gain in the Simon Task: Does increasing relevant activation reduce the effect of irrelevant activation? Journal of Experimental Psychology: Human Perception and Performance, 44(8), 1153–1167. https://doi.org/10.1037/xhp0000523
doi: 10.1037/xhp0000523 pubmed: 29683718
Mittelstädt, V., & Miller, J. (2020). Beyond mean reaction times: Combining distributional analyses with processing stage manipulations in the Simon task. Cognitive Psychology, 119, 101275. https://doi.org/10.1016/j.cogpsych.2020.101275
doi: 10.1016/j.cogpsych.2020.101275 pubmed: 32032900
Mittelstädt, V., Miller, J., Leuthold, H., Mackenzie, I. G., & Ulrich, R. (2022b). The time-course of distractor-based activation modulates effects of speed–accuracy tradeoffs in conflict tasks. Psychonomic Bulletin & Review, 29(3), 837–854. https://doi.org/10.3758/s13423-021-02003-x
doi: 10.3758/s13423-021-02003-x
Mittelstädt, V., Ulrich, R., König, J., Hofbauer, K., & Mackenzie, I. G. (2022c). The influence of reward in the Simon task: Differences and similarities to the Stroop and Eriksen flanker tasks. Attention, Perception, & Psychophysics, 1–11. https://doi.org/10.3758/s13414-022-02563-7
Notebaert, W., & Verguts, T. (2008). Cognitive control acts locally. Cognition, 106(2), 1071–1080. https://doi.org/10.1016/j.cognition.2007.04.011
doi: 10.1016/j.cognition.2007.04.011 pubmed: 17537419
Rey-Mermet, A., Gade, M., & Steinhauser, M. (2019). Sequential conflict resolution under multiple concurrent conflicts: An ERP study. NeuroImage, 188, 411–418. https://doi.org/10.1016/j.neuroimage.2018.12.031
doi: 10.1016/j.neuroimage.2018.12.031 pubmed: 30562575
Pratte, M. S., Rouder, J. N., Morey, R. D., & Feng, C. (2010). Exploring the differences in distributional properties between Stroop and Simon effects using delta plots. Attention, Perception, & Psychophysics, 72(7), 2013–2025. https://doi.org/10.3758/APP.72.7.2013
doi: 10.3758/APP.72.7.2013
Ridderinkhof, K. R., van den Wildenberg, W. P., Wijnen, J., & Burle, B. (2004). Response inhibition in conflict tasks is revealed in delta plots. In M. Posner (Ed.), Cognitive neuroscience of attention (pp. 369–377). Guilford Press.
Ridderinkhof, R. K. (2002). Micro-and macro-adjustments of task set: activation and suppression in conflict tasks. Psychological Research, 66(4), 312–323. https://doi.org/10.1007/s00426-002-0104-7
doi: 10.1007/s00426-002-0104-7 pubmed: 12466928
Schmidt, J. R. (2013a). Temporal learning and list-level proportion congruency: Conflict adaptation or learning when to respond? PLOS ONE, 8(11), e82320. https://doi.org/10.1371/journal.pone.0082320
doi: 10.1371/journal.pone.0082320 pubmed: 24312413 pmcid: 3842973
Schmidt, J. R. (2013b). Questioning conflict adaptation: Proportion congruent and Gratton effects reconsidered. Psychonomic Bulletin & Review, 20(4), 615–630. https://doi.org/10.3758/s13423-012-0373-0
doi: 10.3758/s13423-012-0373-0
Schmidt, J. R. (2019). Evidence against conflict monitoring and adaptation: An updated review. Psychonomic Bulletin & Review, 26(3), 753–771. https://doi.org/10.3758/s13423-018-1520-z
doi: 10.3758/s13423-018-1520-z
Schmidt, J. R., & Besner, D. (2008). The Stroop effect: Why proportion congruent has nothing to do with congruency and everything to do with contingency. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(3), 514–523. https://doi.org/10.1037/0278-7393.34.3.514
doi: 10.1037/0278-7393.34.3.514 pubmed: 18444752
Schumacher, E. H., & Hazeltine, E. (2016). Hierarchical task representation: Task files and response selection. Current Directions in Psychological Science, 25, 449–454. https://doi.org/10.1177/0963721416665085
doi: 10.1177/0963721416665085
Servant, M., & Logan, G. D. (2019). Dynamics of attentional focusing in the Eriksen flanker task. Attention, Perception, & Psychophysics, 81(8), 2710–2721. https://doi.org/10.3758/s13414-019-01796-3
doi: 10.3758/s13414-019-01796-3
Shichel, I., & Goldfarb, L. (2022). The effect of proportion manipulation on the size-congruency and distance effects in the numerical Stroop task. Memory & Cognition, 50, 1578–1589. https://doi.org/10.3758/s13421-022-01292-4
doi: 10.3758/s13421-022-01292-4
Simon, H. A. (1990). Invariants of human behavior. Annual Review of Psychology, 41(1), 1–19. https://doi.org/10.1146/annurev.ps.41.020190.000245
doi: 10.1146/annurev.ps.41.020190.000245 pubmed: 18331187
Spence, C., & Ho, C. (2015). Multisensory information processing. In D. A. Boehm-Davis, F. T. Durso, & J. D. Lee (Eds.), APA handbook of human systems integration (pp. 435–448). American Psychological Association. https://doi.org/10.1037/14528-027
doi: 10.1037/14528-027
Sprengel, M., Tomat, M., Wendt, M., Knoth, S., & Jacobsen, T. (2022). Dissociating selectivity adjustments from temporal learning-introducing the context-dependent proportion congruency effect. PLOS ONE, 17(12), e0276611. https://doi.org/10.1371/journal.pone.0276611
doi: 10.1371/journal.pone.0276611 pubmed: 36512610 pmcid: 9747054
Stephan, D. N., & Koch, I. (2016). Modality-specific effects on crosstalk in task switching: Evidence from modality compatibility using bimodal stimulation. Psychological Research, 80(6), 935–943. https://doi.org/10.1007/s00426-015-0700-y
doi: 10.1007/s00426-015-0700-y pubmed: 26377338
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 121(1), 15–23. https://doi.org/10.1037/0096-3445.121.1.15
doi: 10.1037/0096-3445.121.1.15
Stürmer, B., Leuthold, H., Soetens, E., Schröter, H., & Sommer, W. (2002). Control over location-based response activation in the Simon task: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 28(6), 1345–1363. https://doi.org/10.1037/0096-1523.28.6.1345
doi: 10.1037/0096-1523.28.6.1345 pubmed: 12542132
Thomson, D. R., Willoughby, K., & Milliken, B. (2014). Implicit learning modulates attention capture: Evidence from an item-specific proportion congruency manipulation. Frontiers in Psychology, 5(551). https://doi.org/10.3389/fpsyg.2014.00551
Treccani, B., Cona, G., Milanese, N., & Umiltà, C. (2018). Sequential modulation of (bottom-up) response activation and inhibition in a response conflict task: A single-pulse transcranial magnetic stimulation study. Psychological Research, 82(4), 771–786. https://doi.org/10.1007/s00426-017-0863-9
doi: 10.1007/s00426-017-0863-9 pubmed: 28393259
Turk, M. (2014). Multimodal interaction: A review. Pattern Recognition Letters, 36, 189–195. https://doi.org/10.1016/j.patrec.2013.07.003
doi: 10.1016/j.patrec.2013.07.003
Ulrich, R., Prislan, L., & Miller, J. (2021). A bimodal extension of the Eriksen flanker task. Attention, Perception, & Psychophysics, 83(2), 790–799. https://doi.org/10.3758/s13414-020-02150-8
doi: 10.3758/s13414-020-02150-8
Ulrich, R., Schröter, H., Leuthold, H., & Birngruber, T. (2015). Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions. Cognitive Psychology, 78, 148–174. https://doi.org/10.1016/j.cogpsych.2015.02.005
doi: 10.1016/j.cogpsych.2015.02.005 pubmed: 25909766
Verguts, T., & Notebaert, W. (2009). Adaptation by binding: A learning account of cognitive control. Trends in Cognitive Sciences, 13, 252–257. https://doi.org/10.1016/j.tics.2009.02.007
doi: 10.1016/j.tics.2009.02.007 pubmed: 19428288
Weissman, D. H., Jiang, J., & Egner, T. (2014). Determinants of congruency sequence effects without learning and memory confounds. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 2022–2037. https://doi.org/10.1037/a0037454
doi: 10.1037/a0037454 pubmed: 25089574
Wendt, M., Kluwe, R. H., & Peters, A. (2006). Sequential modulations of interference evoked by processing task-irrelevant stimulus features. Journal of Experimental Psychology: Human Perception and Performance, 32(3), 644–667. https://doi.org/10.1037/0096-1523.32.3.644
doi: 10.1037/0096-1523.32.3.644 pubmed: 16822130
Wendt, M., & Luna-Rodriguez, A. (2009). Conflict-frequency affects flanker interference: Role of stimulus-ensemble-specific practice and flanker-response contingencies. Experimental Psychology, 56(3), 206–217. https://doi.org/10.1027/1618-3169.56.3.206
doi: 10.1027/1618-3169.56.3.206 pubmed: 19289363
Wesslein, A.-K., Spence, C., & Frings, C. (2014). When vision influences the invisible distractor: Tactile response compatibility effects require vision. Journal of Experimental Psychology: Human Perception and Performance, 40(2), 763–774. https://doi.org/10.1037/a0035047
doi: 10.1037/a0035047 pubmed: 24245501
Wesslein, A.-K., Spence, C., & Frings, C. (2015). You can’t ignore what you can’t separate: The effect of visually induced target-distractor separation on tactile selection. Psychonomic Bulletin & Review, 22(3), 728–736. https://doi.org/10.3758/s13423-014-0738-7
doi: 10.3758/s13423-014-0738-7
Wiegand, K., & Wascher, E. (2005). Dynamic Aspects of stimulus–response correspondence: Evidence for two mechanisms involved in the Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 31(3), 453–464. https://doi.org/10.1037/0096-1523.31.3.453
doi: 10.1037/0096-1523.31.3.453 pubmed: 15982125
Wühr, P., & Ansorge, U. (2005). Exploring trial-by-trial modulations of the Simon effect. The Quarterly Journal of Experimental Psychology Section A, 58(4), 705–731. https://doi.org/10.1080/02724980443000269
doi: 10.1080/02724980443000269
Wühr, P., Duthoo, W., & Notebaert, W. (2015). Generalizing attentional control across dimensions and tasks: Evidence from transfer of proportion-congruent effects. Quarterly Journal of Experimental Psychology, 68(4), 779–801. https://doi.org/10.1080/17470218.2014.966729
doi: 10.1080/17470218.2014.966729
Yang, G., Nan, W., Zheng, Y., Wu, H., Li, Q., & Liu, X. (2017). Distinct cognitive control mechanisms as revealed by modality-specific conflict adaptation effects. Journal of Experimental Psychology: Human Perception and Performance, 43(4), 807–818. https://doi.org/10.1037/xhp0000351
doi: 10.1037/xhp0000351 pubmed: 28345947
Yang, G., Xu, H., Li, Z., Nan, W., Wu, H., Li, Q., & Liu, X. (2021). The congruency sequence effect is modulated by the similarity of conflicts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 47(10), 1705–1719. https://doi.org/10.1037/xlm0001054
doi: 10.1037/xlm0001054 pubmed: 34672662

Auteurs

Linda C Bräutigam (LC)

Department of Psychology, University of Tübingen, Schleichstrasse 4, 72076, Tübingen, Germany. Linda-carmen.braeutigam@uni-tuebingen.de.

Hartmut Leuthold (H)

Department of Psychology, University of Tübingen, Schleichstrasse 4, 72076, Tübingen, Germany.

Ian G Mackenzie (IG)

Department of Psychology, University of Tübingen, Schleichstrasse 4, 72076, Tübingen, Germany.

Victor Mittelstädt (V)

Department of Psychology, University of Tübingen, Schleichstrasse 4, 72076, Tübingen, Germany.

Classifications MeSH