Association of growth and differentiation factor-15 with coronary artery calcium score and ankle-brachial index in a middle-aged and elderly Caucasian population sample free of manifest cardiovascular disease.

Aging Ankle-brachial index Atherosclerosis Cardiovascular risk factors Coronary artery calcium score Growth and differentiation factor-15 Inflammaging

Journal

GeroScience
ISSN: 2509-2723
Titre abrégé: Geroscience
Pays: Switzerland
ID NLM: 101686284

Informations de publication

Date de publication:
07 Aug 2023
Historique:
received: 29 06 2023
accepted: 30 07 2023
medline: 7 8 2023
pubmed: 7 8 2023
entrez: 7 8 2023
Statut: aheadofprint

Résumé

Growth and differentiation factor-15 (GDF-15) is a stress-associated cytokine of the transforming growth factor-β superfamily. The inflammatory and angiogenic effects of GDF-15 in atherosclerosis are controversial, and its correlation with the long asymptomatic phase of the disease is not well understood. Coronary artery calcium score (CACS) and ankle-brachial index (ABI) are sensitive markers of subclinical atherosclerosis. To date, only a few studies have examined the impact of GDF-15 on coronary artery calcification, and the association between GDF-15 and ABI has not been evaluated. Therefore, we aimed to investigate the possible relationship between serum GDF-15 concentrations and CACS and ABI in a Caucasian population sample of middle-aged (35-65 years) and elderly (> 65 years) people. In addition to recording demographic and anthropometric characteristics, atherosclerotic risk factors, and laboratory tests including serum HDL-cholesterol, LDL-cholesterol, hemoglobin A1c (HbA1c), high-sensitivity C-reactive protein, and N-terminal pro-B-type natriuretic peptide (NT-proBNP); GDF-15 level, cardiac computed tomography, and ABI measurements were also performed. A total of 269 asymptomatic individuals (men, n = 125; median age, 61.5 [IQR, 12.7] years) formed the basis of this study. Participants were divided into two groups according to their age (middle-aged, n = 175 and elderly, n = 94). Hypertension and diabetes mellitus were significantly more prevalent and CACS values and HbA1c, NT-proBNP, and GDF-15 levels were significantly higher (all p < 0.001) in the elderly group compared to the middle-aged group. Multivariate ridge regression analysis revealed a significant positive association between GDF-15 and CACS (middle-aged group: β = 0.072, p = 0.333; elderly group: β = 0.148, p = 0.003), and between GDF-15 and ABI (middle-aged group: β = 0.062, p = 0.393; elderly group: β = 0.088, p = 0.041) only in the elderly group. Our results show that GDF-15 is not only a useful biomarker of inflammation but can also predict early signs of asymptomatic atherosclerosis, especially in elderly people with chronic systemic inflammation associated with aging (inflammaging).

Identifiants

pubmed: 37548881
doi: 10.1007/s11357-023-00899-y
pii: 10.1007/s11357-023-00899-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Research, Development and Innovation Office
ID : NVKP_16-1-2016-0017
Organisme : Ministry of Innovation and Technology, Hungary
ID : TKP2021-NVA-15
Organisme : European Union
ID : RRF-2.3.1-21-2022-00003

Informations de copyright

© 2023. The Author(s).

Références

Corre J, Hébraud B, Bourin P. Concise review: growth differentiation factor 15 in pathology: a clinical role? Stem Cells Transl Med. 2013;2:946–52. https://doi.org/10.5966/sctm.2013-0055 .
doi: 10.5966/sctm.2013-0055 pubmed: 24191265 pmcid: 3841089
Zimmers TA, Jin X, Hsiao EC, McGrath SA, Esquela AF, Koniaris LG. Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury. Shock. 2005;23:543–8.
pubmed: 15897808
Unsicker K, Spittau B, Krieglstein K. The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev. 2013;24:373–84. https://doi.org/10.1016/j.cytogfr.2013.05.003 .
doi: 10.1016/j.cytogfr.2013.05.003 pubmed: 23787157
Baek SJ, Eling T. Growth differentiation factor 15 (GDF15): A survival protein with therapeutic potential in metabolic diseases. Pharmacol Ther. 2019;198:46–58. https://doi.org/10.1016/j.pharmthera.2019.02.008 .
doi: 10.1016/j.pharmthera.2019.02.008 pubmed: 30790643 pmcid: 7196666
Welsh P, Kimenai DM, Marioni RE, Hayward C, Campbell A, Porteous D, Mills NL, O’Rahilly S, Sattar N. Reference ranges for GDF-15, and risk factors associated with GDF-15, in a large general population cohort. Clin Chem Lab Med. 2022;60:1820–9. https://doi.org/10.1515/cclm-2022-0135 .
doi: 10.1515/cclm-2022-0135 pubmed: 35976089 pmcid: 9524804
de Jager SCA, Bermúdez B, Bot I, Koenen RR, Bot M, Kavelaars A, de Waard V, Heijnen CJ, Muriana FJG, Weber C, et al. Growth differentiation factor 15 deficiency protects against atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis. J Exp Med. 2011;208:217–25. https://doi.org/10.1084/jem.20100370 .
doi: 10.1084/jem.20100370 pubmed: 21242297 pmcid: 3039852
Preusch MR, Baeuerle M, Albrecht C, Blessing E, Bischof M, Katus HA, Bea F. GDF-15 protects from macrophage accumulation in a mousemodel of advanced atherosclerosis. Eur J Med Res. 2013;18:19. https://doi.org/10.1186/2047-783X-18-19 .
doi: 10.1186/2047-783X-18-19 pubmed: 23800095 pmcid: 3701574
Bonaterra GA, Zügel S, Thogersen J, Walter SA, Haberkorn U, Strelau J, Kinscherf R. Growth differentiation factor-15 deficiency inhibits atherosclerosis progression by regulating interleukin-6-dependent inflammatory response to vascular injury. J Am Heart Assoc. 2012;1:e002550. https://doi.org/10.1161/jaha.112.002550 .
doi: 10.1161/jaha.112.002550 pubmed: 23316317 pmcid: 3540664
Wang J, Wei L, Yang X, Zhong J. Roles of Growth Differentiation Factor 15 in Atherosclerosis and Coronary Artery Disease. J Am Heart Assoc. 2019;8:e012826. https://doi.org/10.1161/jaha.119.012826 .
doi: 10.1161/jaha.119.012826 pubmed: 31432727 pmcid: 6755840
Chen J, Luo F, Fang Z, Zhang W. GDF-15 levels and atherosclerosis. Int J Cardiol. 2018;257:36. https://doi.org/10.1016/j.ijcard.2017.10.037 .
doi: 10.1016/j.ijcard.2017.10.037 pubmed: 29506733
Neves PO, Andrade J, Monção H. Coronary artery calcium score: current status. Radiol Bras. 2017;50:182–9. https://doi.org/10.1590/0100-3984.2015.0235 .
doi: 10.1590/0100-3984.2015.0235 pubmed: 28670030 pmcid: 5487233
Vliegenthart R, Morris PB. Computed tomography coronary artery calcium scoring: review of evidence base and cost-effectiveness in cardiovascular risk prediction. J Thorac Imaging. 2012;27:296–303. https://doi.org/10.1097/RTI.0b013e318254a00c .
doi: 10.1097/RTI.0b013e318254a00c pubmed: 22914123
Bilim S, Içağasioğlu A, Akbal A, Kasapoğlu E, Gürsel S. Assessment of subclinical atherosclerosis with ankle-brachial index in psoriatic arthritis: A case-control study. Arch Rheumatol. 2021;36:210–8. https://doi.org/10.46497/ArchRheumatol.2021.8083 .
doi: 10.46497/ArchRheumatol.2021.8083 pubmed: 34527925 pmcid: 8418778
Criqui MH, McClelland RL, McDermott MM, Allison MA, Blumenthal RS, Aboyans V, Ix JH, Burke GL, Liu K, Shea S. The ankle-brachial index and incident cardiovascular events in the MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2010;56:1506–12. https://doi.org/10.1016/j.jacc.2010.04.060 .
doi: 10.1016/j.jacc.2010.04.060 pubmed: 20951328 pmcid: 2962558
Victor RG, Haley RW, Willett DL, Peshock RM, Vaeth PC, Leonard D, Basit M, Cooper RS, Iannacchione VG, Visscher WA, et al. The Dallas Heart Study: a population-based probability sample for the multidisciplinary study of ethnic differences in cardiovascular health. Am J Cardiol. 2004;93:1473–80. https://doi.org/10.1016/j.amjcard.2004.02.058 .
doi: 10.1016/j.amjcard.2004.02.058 pubmed: 15194016
Martinez CH, Freeman CM, Nelson JD, Murray S, Wang X, Budoff MJ, Dransfield MT, Hokanson JE, Kazerooni EA, Kinney GL, et al. GDF-15 plasma levels in chronic obstructive pulmonary disease are associated with subclinical coronary artery disease. Respir Res. 2017;18:42. https://doi.org/10.1186/s12931-017-0521-1 .
doi: 10.1186/s12931-017-0521-1 pubmed: 28245821 pmcid: 5331711
Laucyte-Cibulskiene A, Ward LJ, Ebert T, Tosti G, Tucci C, Hernandez L, Kautzky-Willer A, Herrero M-T, Norris CM, Pilote L, et al. Role of GDF-15, YKL-40 and MMP 9 in patients with end-stage kidney disease: focus on sex-specific associations with vascular outcomes and all-cause mortality. Biol Sex Differ. 2021;12:50. https://doi.org/10.1186/s13293-021-00393-0 .
doi: 10.1186/s13293-021-00393-0 pubmed: 34526107 pmcid: 8444580
Kaiser H, Wang X, Kvist-Hansen A, Krakauer M, Gørtz PM, McCauley BD, Skov L, Becker C, Hansen PR. Biomarkers of subclinical atherosclerosis in patients with psoriasis. Sci Rep. 2021;11:21438. https://doi.org/10.1038/s41598-021-00999-9 .
doi: 10.1038/s41598-021-00999-9 pubmed: 34728734 pmcid: 8564536
Gohar A, Gonçalves I, Vrijenhoek J, Haitjema S, van Koeverden I, Nilsson J, de Borst GJ, de Vries JP, Pasterkamp G, den Ruijter HM, et al. Circulating GDF-15 levels predict future secondary manifestations of cardiovascular disease explicitly in women but not men with atherosclerosis. Int J Cardiol. 2017;241:430–6. https://doi.org/10.1016/j.ijcard.2017.03.101 .
doi: 10.1016/j.ijcard.2017.03.101 pubmed: 28389123
Meloux A, Rochette. L, Maza M, Bichat F, Cottin Y, Zeller M, Vergely C. Association between growth differentiation factor-15 and heart failure complicating acute myocardial infarction. Cardiol Cardiovasc Med. 2020;04. https://doi.org/10.26502/fccm.92920174 .
De Haan JJ, Haitjema S, den Ruijter HM, Pasterkamp G, de Borst GJ, Teraa M, Verhaar MC, Gremmels H, de Jager SCA. Growth differentiation factor 15 is associated with major amputation and mortality in patients with peripheral artery disease. J Am Heart Assoc. 2017;6. https://doi.org/10.1161/jaha.117.006225 .
Bagyura Z, Kiss L, Edes E, Lux A, Polgár L, Soós P, Szenczi O, Szelid Z, Vadas R, Józan P, et al. Cardiovascular screening programme in the Central Hungarian region. The budakalász study. Orv Hetil. 2014;155:1344–52. https://doi.org/10.1556/oh.2014.29969 .
doi: 10.1556/oh.2014.29969 pubmed: 25131527
Association WM. World medical association declaration of helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–4. https://doi.org/10.1001/jama.2013.281053 .
doi: 10.1001/jama.2013.281053
Bagyura Z, Kiss L, Lux Á, Csobay-Novák C, Jermendy ÁL, Polgár L, Szelid Z, Soós P, Merkely B. Association between coronary atherosclerosis and visceral adiposity index. Nutr, Metab, Cardiovasc Dis: NMCD. 2020;30:796–803. https://doi.org/10.1016/j.numecd.2020.01.013 .
doi: 10.1016/j.numecd.2020.01.013 pubmed: 32127334
Kiss LZ, Bagyura Z, Csobay-Novák C, Lux Á, Polgár L, Jermendy Á, Soós P, Szelid Z, Maurovich-Horvat P, Becker D, et al. Serum Uric Acid Is Independently Associated with Coronary Calcification in an Asymptomatic Population. J Cardiovasc Transl Res. 2019;12:204–10. https://doi.org/10.1007/s12265-018-9843-8 .
doi: 10.1007/s12265-018-9843-8 pubmed: 30414068
Lee HY, Lim S, Park S. Role of Inflammation in Arterial Calcification. Korean Circ J. 2021;51:114–25. https://doi.org/10.4070/kcj.2020.0517 .
doi: 10.4070/kcj.2020.0517 pubmed: 33525066 pmcid: 7853899
Bagyura Z, Kiss L, Lux Á, Csobay-Novák C, Jermendy ÁL, Polgár L, Tabák ÁG, Soós P, Szelid Z, Merkely B, et al. Neutrophil-to-lymphocyte ratio is an independent risk factor for coronary artery disease in central obesity. Int J Mol Sci. 2023;24. https://doi.org/10.3390/ijms24087397 .
Hacıoğlu Y, Kılıçkaya P, Rakıcı İT, Karataş S, Pişkinpaşa ME, Karabağ T. Correlation of coronary calcium scores with growth differentiation factor-15 levels in patients with coronary artery disease. İstanbul Med J. 2022;23:74–8. https://doi.org/10.4274/imj.galenos.2022.58740 .
doi: 10.4274/imj.galenos.2022.58740
Jönelid B, Christersson C, Hedberg P, Leppert J, Lindahl B, Lindhagen L, Oldgren J, Siegbahn A. Screening of biomarkers for prediction of multisite artery disease in patients with recent myocardial infarction. Scand J Clin Lab Invest. 2021;81:353–60. https://doi.org/10.1080/00365513.2021.1921839 .
doi: 10.1080/00365513.2021.1921839 pubmed: 34346268
Dakhel A, Memon AA, Zarrouk M, Ågren-Witteschus S, Sundquist J, Sundquist K, Gottsäter A. Novel cardiovascular biomarkers associated with peripheral arterial disease in men screened for abdominal aortic aneurysm. Vasa. 2022;51:167–73. https://doi.org/10.1024/0301-1526/a000999 .
doi: 10.1024/0301-1526/a000999 pubmed: 35387491
Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15:505–22. https://doi.org/10.1038/s41569-018-0064-2 .
doi: 10.1038/s41569-018-0064-2 pubmed: 30065258 pmcid: 6146930
Wischhusen J, Melero I, Fridman WH. Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint. Front Immunol. 2020;11:951. https://doi.org/10.3389/fimmu.2020.00951 .
doi: 10.3389/fimmu.2020.00951 pubmed: 32508832 pmcid: 7248355
Tanaka T, Biancotto A, Moaddel R, Moore AZ, Gonzalez-Freire M, Aon MA, Candia J, Zhang P, Cheung F, Fantoni G, et al. Plasma proteomic signature of age in healthy humans. Aging Cell. 2018;17:e12799. https://doi.org/10.1111/acel.12799 .
doi: 10.1111/acel.12799 pubmed: 29992704 pmcid: 6156492
Pence BD. Growth Differentiation Factor-15 in Immunity and Aging. Front Aging. 2022;3:837575. https://doi.org/10.3389/fragi.2022.837575 .
doi: 10.3389/fragi.2022.837575 pubmed: 35821815 pmcid: 9261309
Bencivenga L, Strumia M, Rolland Y, Martinez L, Cestac P, Guyonnet S, Andrieu S, Parini A, Lucas A, Vellas B, et al. Biomarkers of mitochondrial dysfunction and inflammaging in older adults and blood pressure variability. Geroscience. 2023;45:797–809. https://doi.org/10.1007/s11357-022-00697-y .
doi: 10.1007/s11357-022-00697-y pubmed: 36454336
Kontis V, Bennett JE, Mathers CD, Li G, Foreman K, Ezzati M. Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. Lancet. 2017;389:1323–35. https://doi.org/10.1016/s0140-6736(16)32381-9 .
doi: 10.1016/s0140-6736(16)32381-9 pubmed: 28236464 pmcid: 5387671
The World Bank. United Nations Population Division. World Population Prospects: 2022 Revision. https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS?locations=HU Accessed 2023.06.13.

Auteurs

Loretta Zsuzsa Kiss (LZ)

Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, 1122, Budapest, Hungary. kisslotti@gmail.com.

Balázs Bence Nyárády (BB)

Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, 1122, Budapest, Hungary.

Éva Pállinger (É)

Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Square, 1089, Budapest, Hungary.

Árpád Lux (Á)

Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, 1122, Budapest, Hungary.
Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands.

Ádám Levente Jermendy (ÁL)

Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, 1122, Budapest, Hungary.

Csaba Csobay-Novák (C)

Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, 1122, Budapest, Hungary.

Pál Soós (P)

Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, 1122, Budapest, Hungary.

Zsolt Szelid (Z)

Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, 1122, Budapest, Hungary.

Orsolya Láng (O)

Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Square, 1089, Budapest, Hungary.

László Kőhidai (L)

Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Square, 1089, Budapest, Hungary.

Elek Dinya (E)

Institute of Digital Health Sciences, Semmelweis University, 15 Ferenc Square, 1094, Budapest, Hungary.

Edit Dósa (E)

Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, 1122, Budapest, Hungary.

Béla Merkely (B)

Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, 1122, Budapest, Hungary.

Zsolt Bagyura (Z)

Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, 1122, Budapest, Hungary.

Classifications MeSH