Suppression of Cation Intermixing Highly Boosts the Performance of Core-Shell Lanthanide Upconversion Nanoparticles.
Journal
Journal of the American Chemical Society
ISSN: 1520-5126
Titre abrégé: J Am Chem Soc
Pays: United States
ID NLM: 7503056
Informations de publication
Date de publication:
16 Aug 2023
16 Aug 2023
Historique:
medline:
7
8
2023
pubmed:
7
8
2023
entrez:
7
8
2023
Statut:
ppublish
Résumé
Lanthanide upconversion nanoparticles (UCNPs) have been extensively explored as biomarkers, energy transducers, and information carriers in wide-ranging applications in areas from healthcare and energy to information technology. In promoting the brightness and enriching the functionalities of UCNPs, core-shell structural engineering has been well-established as an important approach. Despite its importance, a strong limiting issue has been identified, namely, cation intermixing in the interfacial region of the synthesized core-shell nanoparticles. Currently, there still exists confusion regarding this destructive phenomenon and there is a lack of facile means to reach a delicate control of it. By means of a new set of experiments, we identify and provide in this work a comprehensive picture for the major physical mechanism of cation intermixing occurring in synthesis of core-shell UCNPs, i.e., partial or substantial core nanoparticle dissolution followed by epitaxial growth of the outer layer and ripening of the entire particle. Based on this picture, we provide an easy but effective approach to tackle this issue that enables us to produce UCNPs with highly boosted optical properties.
Identifiants
pubmed: 37549032
doi: 10.1021/jacs.3c03019
pmc: PMC10436270
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
17621-17631Références
J Am Chem Soc. 2012 Jul 11;134(27):11068-71
pubmed: 22734596
Light Sci Appl. 2018 Apr 06;7:18007
pubmed: 30839540
Nanotechnology. 2008 Aug 27;19(34):345606
pubmed: 21730655
Nat Commun. 2021 Oct 26;12(1):6178
pubmed: 34702817
Light Sci Appl. 2022 Aug 19;11(1):256
pubmed: 35986019
J Am Chem Soc. 2017 Mar 1;139(8):3275-3282
pubmed: 28169535
Angew Chem Int Ed Engl. 2018 Jul 9;57(28):8765-8769
pubmed: 29732658
Molecules. 2019 Jan 19;24(2):
pubmed: 30669489
Nat Commun. 2016 Oct 04;7:13059
pubmed: 27698348
Light Sci Appl. 2016 Aug 12;5(8):e16136
pubmed: 30167183
Angew Chem Int Ed Engl. 2016 Sep 26;55(40):12356-60
pubmed: 27377449
J Am Chem Soc. 2013 Aug 28;135(34):12608-11
pubmed: 23947580
Angew Chem Int Ed Engl. 2015 Oct 19;54(43):12788-90
pubmed: 26315850
Small. 2021 Nov;17(47):e2104441
pubmed: 34697908
Langmuir. 2021 Feb 16;37(6):2146-2152
pubmed: 33534994
Nat Mater. 2011 Oct 23;10(12):968-73
pubmed: 22019945
Angew Chem Int Ed Engl. 2016 Jan 18;55(3):1164-7
pubmed: 26633748
Biosensors (Basel). 2021 May 10;11(5):
pubmed: 34068452
Nat Nanotechnol. 2015 Mar;10(3):237-42
pubmed: 25599189
Nat Commun. 2022 May 23;13(1):2843
pubmed: 35606360
Angew Chem Int Ed Engl. 2016 Feb 12;55(7):2464-9
pubmed: 26762564
Biosensors (Basel). 2021 Dec 14;11(12):
pubmed: 34940272
Langmuir. 2008 Nov 4;24(21):12123-5
pubmed: 18839973
Light Sci Appl. 2020 Oct 30;9(1):184
pubmed: 33298830
Chem Soc Rev. 2015 Mar 21;44(6):1680-713
pubmed: 25335878
Nanoscale. 2015 Jan 28;7(4):1403-10
pubmed: 25503253
Nanoscale. 2012 Dec 7;4(23):7309-21
pubmed: 23086529
Nanoscale. 2017 May 25;9(20):6711-6715
pubmed: 28485432
Nat Commun. 2017 Oct 20;8(1):1058
pubmed: 29051497
Light Sci Appl. 2022 Jul 11;11(1):217
pubmed: 35817780
Nano Lett. 2022 May 11;22(9):3761-3769
pubmed: 35500253
Langmuir. 2016 Aug 16;32(32):8222-9
pubmed: 27459496
Nat Nanotechnol. 2022 May;17(5):524-530
pubmed: 35469009
ACS Nano. 2009 Jan 27;3(1):123-30
pubmed: 19206258