Beneficial effects of empagliflozin and liraglutide on the cerebral microcirculation of diabetic rats.

brain empagliflozin liraglutide microcirculation type-2 diabetes mellitus

Journal

Microcirculation (New York, N.Y. : 1994)
ISSN: 1549-8719
Titre abrégé: Microcirculation
Pays: United States
ID NLM: 9434935

Informations de publication

Date de publication:
Oct 2023
Historique:
revised: 05 07 2023
received: 23 01 2023
accepted: 24 07 2023
pubmed: 7 8 2023
medline: 7 8 2023
entrez: 7 8 2023
Statut: ppublish

Résumé

This study aimed to evaluate the effects of the antidiabetics liraglutide, a GLP-1 analog, and empagliflozin, an SGLT-2 inhibitor, on the brain microcirculation of diabetic rats. Type 2 diabetes mellitus (DM) was experimentally induced in male Wistar rats by combining a high-fat diet and a low dose of streptozotocin (35 mg/kg). Liraglutide (100 μg/kg s.c.) and empagliflozin (10 mg/kg, oral) were administered for 5 weeks. Body weight was monitored periodically. Oral glucose tolerance, fasting glycemia, and blood triglycerides were evaluated after the treatments. Endothelial-leukocyte interactions in the brain microcirculation and structural capillary density were assessed. DM rats presented metabolic and cerebrovascular alterations. Liraglutide treatment decreased body weight and blood triglycerides of DM rats. Empagliflozin treatment improved glucose tolerance but only the combination therapy significantly reduced fasting blood glucose. Both treatments and their combination reduced leukocyte adhesion into the endothelium of brain venules. However, empagliflozin was more effective in preventing DM-induced microvascular rarefaction. These findings suggest that chronic treatment with SGLT2 inhibitors and GLP-1 receptor agonists may serve as potential therapeutic approaches to prevent microvascular complications associated with diabetes.

Identifiants

pubmed: 37549191
doi: 10.1111/micc.12825
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e12825

Subventions

Organisme : Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Organisme : Universidade Iguaçu

Informations de copyright

© 2023 The Authors. Microcirculation published by John Wiley & Sons Ltd.

Références

Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-281.
Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103:137-149.
Kaze AD, Santhanam P, Erqou S, Bertoni AG, Ahima RS, Echouffo-Tcheugui JB. Microvascular disease and cardiovascular outcomes among individuals with type 2 diabetes. Diabetes Res Clin Pract. 2021;176:108859.
van Sloten TT, Sedaghat S, Carnethon MR, Launer LJ, Stehouwer CDA. Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression. Lancet Diabetes Endocrinol. 2020;8:325-336.
Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies: diabetes and cognitive function. Intern Med J. 2012;42:484-491.
Zhang J, Chen C, Hua S, et al. An updated meta-analysis of cohort studies: diabetes and risk of Alzheimer's disease. Diabetes Res Clin Pract. 2017;124:41-47.
Wang H, Hai S, Liu Y, et al. Association between depressive symptoms and sarcopenia in older Chinese community-dwelling individuals. Clin Interv Aging. 2018;13:1605-1611.
Crane PK, Walker R, Hubbard RA, et al. Glucose levels and risk of dementia. N Engl J Med. 2013;369:540-548.
Lee JE, Shin DW, Han K, et al. Changes in metabolic syndrome status and risk of dementia. J Clin Med. 2020;9:122.
Taïlé J, Patché J, Veeren B, Gonthier M-P. Hyperglycemic condition causes pro-inflammatory and permeability alterations associated with monocyte recruitment and deregulated NFκB/PPARγ pathways on cerebral endothelial cells: evidence for polyphenols uptake and protective effect. Int J Mol Sci. 2021;22:1385.
Busch RS, Kane MP. Combination SGLT2 inhibitor and GLP-1 receptor agonist therapy: a complementary approach to the treatment of type 2 diabetes. Postgrad Med. 2017;129:686-697.
Brown E, Heerspink HJL, Cuthbertson DJ, Wilding JPH. SGLT2 inhibitors and GLP-1 receptor agonists: established and emerging indications. Lancet. 2021;398:262-276.
Ard J, Fitch A, Fruh S, Herman L. Weight loss and maintenance related to the mechanism of action of glucagon-like peptide 1 receptor agonists. Adv Ther. 2021;38:2821-2839.
Frampton JE. Empagliflozin: a review in type 2 diabetes. Drugs. 2018;78:1037-1048.
Park K-A, Jin Z, Lee JY, et al. Long-lasting Exendin-4 fusion protein improves memory deficits in high-fat diet/Streptozotocin-induced diabetic mice. Pharmaceutics. 2020;12:159.
Zhang W, Gao C, Qing Z, et al. Hippocampal subfields atrophy contribute more to cognitive impairment in middle-aged patients with type 2 diabetes rather than microvascular lesions. Acta Diabetol. 2021;58:1023-1033.
Al Hamed FA, Elewa H. Potential therapeutic effects of sodium glucose-linked cotransporter 2 inhibitors in stroke. Clin Ther. 2020;42:e242-e249.
Wiciński M, Wódkiewicz E, Górski K, Walczak M, Malinowski B. Perspective of SGLT2 inhibition in treatment of conditions connected to neuronal loss: focus on Alzheimer's disease and ischemia-related brain injury. Pharmaceuticals. 2020;13:379.
Hierro-Bujalance C, Infante-Garcia C, del Marco A, et al. Empagliflozin reduces vascular damage and cognitive impairment in a mixed murine model of Alzheimer's disease and type 2 diabetes. Alzheimers Res Ther. 2020;12:40.
Estato V, Obadia N, Carvalho-Tavares J, et al. Blockade of the renin-angiotensin system improves cerebral microcirculatory perfusion in diabetic hypertensive rats. Microvasc Res. 2013;87:41-49.
Lagrange J, Kossmann S, Kiouptsi K, Wenzel P. Visualizing leukocyte rolling and adhesion in angiotensin II-infused mice: techniques and pitfalls. J Vis Exp. 2018;131:e56948.
Zudaire E, Gambardella L, Kurcz C, Vermeren S. A computational tool for quantitative analysis of vascular networks. PloS One. 2011;6:e27385.
van Bloemendaal L, ten Kulve JS, la Fleur SE, Ijzerman RG, Diamant M. Effects of glucagon-like peptide 1 on appetite and body weight: focus on the CNS. J Endocrinol. 2014;221:T1-T16.
Fadini GP, Bonora BM, Zatti G, et al. Effects of the SGLT2 inhibitor dapagliflozin on HDL cholesterol, particle size, and cholesterol efflux capacity in patients with type 2 diabetes: a randomized placebo-controlled trial. Cardiovasc Diabetol. 2017;16:42.
Adingupu DD, Göpel SO, Grönros J, et al. SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic Ob/Ob−/− mice. Cardiovasc Diabetol. 2019;18:16.
Cruz Hernández JC, Bracko O, Kersbergen CJ, et al. Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer's disease mouse models. Nat Neurosci. 2019;22:413-420.
Hayden M, Grant D, Aroor A, DeMarco V. Empagliflozin ameliorates type 2 diabetes-induced ultrastructural remodeling of the neurovascular unit and neuroglia in the female db/db mouse. Brain Sci. 2019;9:57.
Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114:597-605.
Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed Pharmacother. 2018;107:306-328.
Stratton IM. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405-412.
Cercato C, Fonseca FA. Cardiovascular risk and obesity. Diabetol Metab Syndr. 2019;11:74.
Wondmkun YT. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes Metab Syndr Obes. 2020;13:3611-3616.

Auteurs

Joana Costa d'Avila (JC)

Pre-clinical Research Laboratory, Iguaçu University, Nova Iguaçu, Brazil.
Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.

Aluana Santana Carlos (AS)

Pre-clinical Research Laboratory, Iguaçu University, Nova Iguaçu, Brazil.

Raimundo Lima Vieira (RL)

Pre-clinical Research Laboratory, Iguaçu University, Nova Iguaçu, Brazil.

Carla Vergueiro (C)

Pre-clinical Research Laboratory, Iguaçu University, Nova Iguaçu, Brazil.

Aline Teixeira Lima (AT)

Pre-clinical Research Laboratory, Iguaçu University, Nova Iguaçu, Brazil.

Isaias Dos Santos Silva (IDS)

Pre-clinical Research Laboratory, Iguaçu University, Nova Iguaçu, Brazil.

Vivian Carvalho de Figueiredo (VC)

School of Medicine, Estácio de Sá University, Rio de Janeiro, Brazil.

Paulo Henrique Petrone Chateaubriand (PHP)

School of Medicine, Estácio de Sá University, Rio de Janeiro, Brazil.

Adalgiza Mafra Moreno (AM)

Pre-clinical Research Laboratory, Iguaçu University, Nova Iguaçu, Brazil.

Hugo Caire de Castro Faria Neto (HC)

Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.

Vanessa Estato (V)

Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
School of Medicine, Estácio de Sá University, Rio de Janeiro, Brazil.

Rodrigo Azeredo Siqueira (RA)

Pre-clinical Research Laboratory, Iguaçu University, Nova Iguaçu, Brazil.

Classifications MeSH