Experimental validation of the free-energy principle with in vitro neural networks.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
07 08 2023
Historique:
received: 12 10 2022
accepted: 13 07 2023
medline: 9 8 2023
pubmed: 8 8 2023
entrez: 7 8 2023
Statut: epublish

Résumé

Empirical applications of the free-energy principle are not straightforward because they entail a commitment to a particular process theory, especially at the cellular and synaptic levels. Using a recently established reverse engineering technique, we confirm the quantitative predictions of the free-energy principle using in vitro networks of rat cortical neurons that perform causal inference. Upon receiving electrical stimuli-generated by mixing two hidden sources-neurons self-organised to selectively encode the two sources. Pharmacological up- and downregulation of network excitability disrupted the ensuing inference, consistent with changes in prior beliefs about hidden sources. As predicted, changes in effective synaptic connectivity reduced variational free energy, where the connection strengths encoded parameters of the generative model. In short, we show that variational free energy minimisation can quantitatively predict the self-organisation of neuronal networks, in terms of their responses and plasticity. These results demonstrate the applicability of the free-energy principle to in vitro neural networks and establish its predictive validity in this setting.

Identifiants

pubmed: 37550277
doi: 10.1038/s41467-023-40141-z
pii: 10.1038/s41467-023-40141-z
pmc: PMC10406890
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4547

Subventions

Organisme : Wellcome Trust
Pays : United Kingdom

Informations de copyright

© 2023. The Author(s).

Références

IEEE Trans Biomed Eng. 2005 Mar;52(3):371-83
pubmed: 15759567
PLoS Biol. 2007 Mar;5(3):e61
pubmed: 17341130
Front Comput Neurosci. 2014 Apr 04;8:38
pubmed: 24772078
PLoS Comput Biol. 2014 Mar 27;10(3):e1003511
pubmed: 24675787
J Physiol. 1973 Jul;232(2):331-56
pubmed: 4727084
Neurosci Biobehav Rev. 2016 Sep;68:862-879
pubmed: 27375276
Biophys J. 1999 Feb;76(2):670-8
pubmed: 9929472
Nat Neurosci. 2000 Sep;3(9):919-26
pubmed: 10966623
Science. 2014 Aug 8;345(6197):668-73
pubmed: 25104385
Netw Neurosci. 2017;1(4):381-414
pubmed: 29417960
Br J Psychiatry. 2017 Mar;210(3):177-179
pubmed: 28249943
PLoS Comput Biol. 2010 Dec 02;6(12):e1001013
pubmed: 21152008
Nat Neurosci. 2010 Mar;13(3):344-52
pubmed: 20098420
Neuron. 2004 Sep 30;44(1):5-21
pubmed: 15450156
Trends Cogn Sci. 2019 Mar;23(3):235-250
pubmed: 30704969
PLoS Comput Biol. 2015 Dec 21;11(12):e1004643
pubmed: 26690814
Neurosci Lett. 1996 Mar 15;206(2-3):109-12
pubmed: 8710163
Neural Comput. 2020 Nov;32(11):2085-2121
pubmed: 32946704
Nat Commun. 2021 Sep 29;12(1):5712
pubmed: 34588436
PLoS One. 2008 May 07;3(5):e2088
pubmed: 18461127
PLoS Comput Biol. 2008 Mar 28;4(3):e1000042
pubmed: 18369432
PLoS One. 2010 Dec 14;5(12):e15554
pubmed: 21179480
Nature. 2012 May 10;485(7397):233-6
pubmed: 22522927
PLoS Comput Biol. 2009 Oct;5(10):e1000532
pubmed: 19816557
Nat Commun. 2023 Aug 7;14(1):4547
pubmed: 37550277
Neurosci Res. 2022 Feb;175:38-45
pubmed: 34968557
Nat Neurosci. 2010 Aug;13(8):917-9
pubmed: 20543842
Nature. 1989 Sep 7;341(6237):52-4
pubmed: 2770878
eNeuro. 2016 Aug 02;3(4):
pubmed: 27517087
J Neurosci. 1998 Dec 15;18(24):10464-72
pubmed: 9852584
Neural Comput. 2017 Jan;29(1):1-49
pubmed: 27870614
Nat Rev Neurosci. 2010 Feb;11(2):127-38
pubmed: 20068583
Neural Comput. 2017 May;29(5):1229-1262
pubmed: 28333583
Nat Rev Neurosci. 2009 Jan;10(1):48-58
pubmed: 19050712
Nature. 2019 Nov;575(7784):607-617
pubmed: 31776490
Trends Neurosci. 2001 Jan;24(1):54-63
pubmed: 11163888
Psychol Rev. 1958 Nov;65(6):386-408
pubmed: 13602029
Sci Rep. 2018 Nov 16;8(1):16926
pubmed: 30446766
Nat Neurosci. 2016 Dec;19(12):1682-1689
pubmed: 27643432
J Physiol Paris. 2006 Jul-Sep;100(1-3):70-87
pubmed: 17097864
PLoS Comput Biol. 2013;9(7):e1003157
pubmed: 23935475
Biophys J. 1961 Jul;1(6):445-66
pubmed: 19431309
Science. 2011 Jan 7;331(6013):83-7
pubmed: 21212356
Lancet Psychiatry. 2014 Jul;1(2):148-58
pubmed: 26360579
Commun Biol. 2022 Jan 14;5(1):55
pubmed: 35031656
Neural Comput. 2008 Jan;20(1):118-45
pubmed: 18045003
Science. 1997 Jan 10;275(5297):213-5
pubmed: 8985014
Neuron. 2022 Dec 7;110(23):3952-3969.e8
pubmed: 36228614
Nat Commun. 2020 Sep 25;11(1):4854
pubmed: 32978383
J Physiol. 1952 Aug;117(4):500-44
pubmed: 12991237
PLoS Comput Biol. 2016 Feb 03;12(2):e1004638
pubmed: 26841235
IEEE Trans Biomed Eng. 2003 Feb;50(2):241-8
pubmed: 12665038
Nat Rev Neurosci. 2004 Feb;5(2):97-107
pubmed: 14735113

Auteurs

Takuya Isomura (T)

Brain Intelligence Theory Unit, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. takuya.isomura@riken.jp.

Kiyoshi Kotani (K)

Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.

Yasuhiko Jimbo (Y)

Department of Precision Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

Karl J Friston (KJ)

Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK.
VERSES AI Research Lab, Los Angeles, CA, 90016, USA.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH