High-intensity sweet taste as a predictor of subjective alcohol responses to the ascending limb of an intravenous alcohol prime: an fMRI study.


Journal

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
ISSN: 1740-634X
Titre abrégé: Neuropsychopharmacology
Pays: England
ID NLM: 8904907

Informations de publication

Date de publication:
07 Aug 2023
Historique:
received: 16 03 2023
accepted: 19 07 2023
revised: 11 07 2023
pubmed: 8 8 2023
medline: 8 8 2023
entrez: 7 8 2023
Statut: aheadofprint

Résumé

High-intensity sweet-liking has been linked to alcohol use disorder (AUD) risk. However, the neural underpinning of this association is poorly understood. To find a biomarker predictive of AUD, 140 participants (social and heavy drinkers, ages 21-26) underwent functional magnetic resonance imaging (fMRI) during a monetary incentive delay (MID) task and stimulation with high (Sucrose

Identifiants

pubmed: 37550441
doi: 10.1038/s41386-023-01684-3
pii: 10.1038/s41386-023-01684-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIGMS NIH HHS
ID : T32 GM148382
Pays : United States
Organisme : NIAAA NIH HHS
ID : P60 AA007611
Pays : United States
Organisme : NIAAA NIH HHS
ID : R01 AA022476
Pays : United States

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2023. The Author(s), under exclusive licence to American College of Neuropsychopharmacology.

Références

Kampov-Polevoy AB, Overstreet DH, Rezvani AH, Janowsky DS. Saccharin-induced increase in daily fluid intake as a predictor of voluntary alcohol intake in alcohol-preferring rats. Physiol Behav. 1995;57:791–5.
pubmed: 7777619 doi: 10.1016/0031-9384(94)00389-0
Kampov-Polevoy AB, Garbutt JC, Janowsky DS. Association between preference for sweets and excessive alcohol intake: a review of animal and human studies. Alcohol Alcohol. 1999;34:386–95.
pubmed: 10414615 doi: 10.1093/alcalc/34.3.386
Kareken DA, Dzemidzic M, Oberlin BG, Eiler WJ 2nd. A preliminary study of the human brain response to oral sucrose and its association with recent drinking. Alcohol Clin Exp Res. 2013;37:2058–65.
pubmed: 23841808 pmcid: 4166559 doi: 10.1111/acer.12194
Eiler WJA 2nd, Dzemidzic M, Soeurt CM, Carron CR, Oberlin BG, Considine RV, et al. Family history of alcoholism and the human brain response to oral sucrose. Neuroimage Clin. 2018;17:1036–46.
pubmed: 29349037 doi: 10.1016/j.nicl.2017.12.019
Rudenga KJ, Small DM. Ventromedial prefrontal cortex response to concentrated sucrose reflects liking rather than sweet quality coding. Chem Senses. 2013;38:585–94.
pubmed: 23828907 pmcid: 3747761 doi: 10.1093/chemse/bjt029
Carney MA, Tennen H, Affleck G, Del Boca FK, Kranzler HR. Levels and patterns of alcohol consumption using timeline follow-back, daily diaries and real-time "electronic interviews". J Stud Alcohol. 1998;59:447–54.
pubmed: 9647427 doi: 10.15288/jsa.1998.59.447
Volkow ND, Wang GJ, Tomasi D, Baler RD. Obesity and addiction: neurobiological overlaps. Obes Rev. 2013;14:2–18.
pubmed: 23016694 doi: 10.1111/j.1467-789X.2012.01031.x
Volkow ND, Wise RA. How can drug addiction help us understand obesity? Nat Neurosci. 2005;8:555–60.
pubmed: 15856062 doi: 10.1038/nn1452
Sescousse G, Caldu X, Segura B, Dreher JC. Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neurosci Biobehav Rev. 2013;37:681–96.
pubmed: 23415703 doi: 10.1016/j.neubiorev.2013.02.002
Abrantes AM, Kunicki Z, Braun T, Miranda R Jr., Blevins CE, Brick L, et al. Daily associations between alcohol and sweets craving and consumption in early AUD recovery: results from an ecological momentary assessment study. J Subst Abus Treat. 2022;132:108614.
doi: 10.1016/j.jsat.2021.108614
Schuckit MA. Low level of response to alcohol as a predictor of future alcoholism. Am J Psychiatry. 1994;151:184–9.
pubmed: 8296886 doi: 10.1176/ajp.151.2.184
King A, Vena A, Hasin DS, deWit H, O’Connor SJ, Cao D. Subjective responses to alcohol in the development and maintenance of alcohol use disorder. Am J Psychiatry. 2021;178:560–71.
pubmed: 33397141 pmcid: 8222099 doi: 10.1176/appi.ajp.2020.20030247
Newlin DB, Thomson JB. Alcohol challenge with sons of alcoholics: a critical review and analysis. Psychol Bull. 1990;108:383–402.
pubmed: 2270234 doi: 10.1037/0033-2909.108.3.383
Zimmermann US, Mick I, Vitvitskyi V, Plawecki MH, Mann KF, O’Connor S. Development and pilot validation of computer-assisted self-infusion of ethanol (CASE): a new method to study alcohol self-administration in humans. Alcohol Clin Exp Res. 2008;32:1321–8.
pubmed: 18540908 pmcid: 8500340 doi: 10.1111/j.1530-0277.2008.00700.x
Plawecki MH, Decarlo R, Ramchandani VA, O’Connor S. Improved transformation of morphometric measurements for a priori parameter estimation in a physiologically-based pharmacokinetic model of ethanol. Biomed Signal Process Control. 2007;2:97–110.
pubmed: 18379641 pmcid: 2180397 doi: 10.1016/j.bspc.2007.04.001
Ramchandani VA, Plawecki M, Li TK, O’Connor S. Intravenous ethanol infusions can mimic the time course of breath alcohol concentrations following oral alcohol administration in healthy volunteers. Alcohol Clin Exp Res. 2009;33:938–44.
pubmed: 19320632 doi: 10.1111/j.1530-0277.2009.00906.x
Cyders MA, Plawecki MH, Corbin W, King A, McCarthy DM, Ramchandani VA, et al. To infuse or ingest in human laboratory alcohol research. Alcohol Clin Exp Res. 2020;44:764–76.
pubmed: 32056250 pmcid: 7166191 doi: 10.1111/acer.14305
Bucholz KK, Cadoret R, Cloninger CR, Dinwiddie SH, Hesselbrock VM, Nurnberger JI Jr., et al. A new, semi-structured psychiatric interview for use in genetic linkage studies: a report on the reliability of the SSAGA. J Stud Alcohol. 1994;55:149–58.
pubmed: 8189735 doi: 10.15288/jsa.1994.55.149
Sobell MB, Sobell LC, Klajner F, Pavan D, Basian E. The reliability of a timeline method for assessing normal drinker college students’ recent drinking history: utility for alcohol research. Addict Behav. 1986;11:149–61.
pubmed: 3739800 doi: 10.1016/0306-4603(86)90040-7
Costa PT, McCrae RR. Normal personality assessment in clinical practice: the NEO Personality Inventory. Psychol Assess. 1992;4:5–13.
doi: 10.1037/1040-3590.4.1.5
Radloff LS. The CES-D Scale. Appl Psychol Meas. 1977;1:385–401.
doi: 10.1177/014662167700100306
Cyders MA, Littlefield AK, Coffey S, Karyadi KA. Examination of a short English version of the UPPS-P Impulsive Behavior Scale. Addict Behav. 2014;39:1372–6.
pubmed: 24636739 pmcid: 4055534 doi: 10.1016/j.addbeh.2014.02.013
Saunders JB, Aasland OG, Babor TF, de la Fuente JR, Grant M. Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection Of Persons With Harmful Alcohol Consumption–II. Addiction. 1993;88:791–804.
pubmed: 8329970 doi: 10.1111/j.1360-0443.1993.tb02093.x
Rice JP, Reich T, Bucholz KK, Neuman RJ, Fishman R, Rochberg N, et al. Comparison of direct interview and family history diagnoses of alcohol dependence. Alcohol Clin Exp Res. 1995;19:1018–23.
Green B, Shaffer G, Gilmore M. A semantically-labeled magnitude scale of oral sensation with apparent ratio properties. Chem Senses. 1993;18:683–702.
doi: 10.1093/chemse/18.6.683
Marciani L, Pfeiffer JC, Hort J, Head K, Bush D, Taylor AJ, et al. Improved methods for fMRI studies of combined taste and aroma stimuli. J Neurosci Methods. 2006;158:186–94.
pubmed: 16839610 doi: 10.1016/j.jneumeth.2006.05.035
Knutson B, Westdorp A, Kaiser E, Hommer D. FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage. 2000;12:20–7.
pubmed: 10875899 doi: 10.1006/nimg.2000.0593
Thesen S, Heid O, Mueller E, Schad LR. Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med. 2000;44:457–65.
pubmed: 10975899 doi: 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage. 2012;62:782–90.
pubmed: 21979382 doi: 10.1016/j.neuroimage.2011.09.015
Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17:825–41.
pubmed: 12377157 doi: 10.1006/nimg.2002.1132
Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17:143–55.
pubmed: 12391568 pmcid: 6871816 doi: 10.1002/hbm.10062
Pruim RHR, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage. 2015;112:267–77.
pubmed: 25770991 doi: 10.1016/j.neuroimage.2015.02.064
Liu RX, Kuang J, Gong Q, Hou XL. Principal component regression analysis with SPSS. Comput Methods Prog Biomed. 2003;71:141–7.
doi: 10.1016/S0169-2607(02)00058-5
Ashburner J, Barnes G, Chen C-C, Daunizeau J, Flandin G, Friston K, et al. SPM12 manual. London, UK: Wellcome Trust Centre for Neuroimaging; 2014. p. 4.
Tian Y, Margulies DS, Breakspear M, Zalesky A. Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nat Neurosci. 2020;23:1421–32.
pubmed: 32989295 doi: 10.1038/s41593-020-00711-6
Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci USA. 2016;113:7900–5.
pubmed: 27357684 pmcid: 4948312 doi: 10.1073/pnas.1602413113
Roberts CA, Giesbrecht T, Fallon N, Thomas A, Mela DJ, Kirkham TC. A systematic review and activation likelihood estimation meta-analysis of fMRI studies on sweet taste in humans. J Nutr. 2020;150:1619–30.
pubmed: 32271923 pmcid: 7269728 doi: 10.1093/jn/nxaa071
Centanni SW, Janes AC, Haggerty DL, Atwood B, Hopf FW. Better living through understanding the insula: why subregions can make all the difference. Neuropharmacology. 2021;198:108765.
pubmed: 34461066 doi: 10.1016/j.neuropharm.2021.108765
Craig AD. Forebrain emotional asymmetry: a neuroanatomical basis? Trends Cogn Sci. 2005;9:566–71.
pubmed: 16275155 doi: 10.1016/j.tics.2005.10.005
Craig AD. How do you feel–now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10:59–70.
pubmed: 19096369 doi: 10.1038/nrn2555
Craig AD. Significance of the insula for the evolution of human awareness of feelings from the body. Ann NY Acad Sci. 2011;1225:72–82.
pubmed: 21534994 doi: 10.1111/j.1749-6632.2011.05990.x
Vogt BA. Midcingulate cortex: structure, connections, homologies, functions and diseases. J Chem Neuroanat. 2016;74:28–46.
pubmed: 26993424 doi: 10.1016/j.jchemneu.2016.01.010
Uddin LQ, Yeo BTT, Spreng RN. Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topogr. 2019;32:926–42.
pubmed: 31707621 pmcid: 7325607 doi: 10.1007/s10548-019-00744-6
Naqvi NH, Rudrauf D, Damasio H, Bechara A. Damage to the insula disrupts addiction to cigarette smoking. Science. 2007;315:531–4.
pubmed: 17255515 pmcid: 3698854 doi: 10.1126/science.1135926
Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998;28:309–69.
pubmed: 9858756 doi: 10.1016/S0165-0173(98)00019-8
Volkow ND, Michaelides M, Baler R. The neuroscience of drug reward and addiction. Physiol Rev. 2019;99:2115–40.
pubmed: 31507244 pmcid: 6890985 doi: 10.1152/physrev.00014.2018
Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73.
pubmed: 27475769 pmcid: 6135092 doi: 10.1016/S2215-0366(16)00104-8
Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.
pubmed: 21653723 doi: 10.1152/jn.00338.2011
Grodin EN, Cortes CR, Spagnolo PA, Momenan R. Structural deficits in salience network regions are associated with increased impulsivity and compulsivity in alcohol dependence. Drug Alcohol Depend. 2017;179:100–8.
pubmed: 28763777 doi: 10.1016/j.drugalcdep.2017.06.014
Halcomb ME, Chumin EJ, Goni J, Dzemidzic M, Yoder KK. Aberrations of anterior insular cortex functional connectivity in nontreatment-seeking alcoholics. Psychiatry Res Neuroimaging. 2019;284:21–28.
pubmed: 30640144 pmcid: 6668713 doi: 10.1016/j.pscychresns.2018.12.016
Joutsa J, Moussawi K, Siddiqi SH, Abdolahi A, Drew W, Cohen AL, et al. Brain lesions disrupting addiction map to a common human brain circuit. Nat Med. 2022;28:1249–55.
pubmed: 35697842 pmcid: 9205767 doi: 10.1038/s41591-022-01834-y
Kim H. Involvement of the dorsal and ventral attention networks in oddball stimulus processing: a meta-analysis. Hum Brain Mapp. 2014;35:2265–84.
pubmed: 23900833 doi: 10.1002/hbm.22326
Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:201–15.
pubmed: 11994752 doi: 10.1038/nrn755
Vossel S, Geng JJ, Fink GR. Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neuroscientist. 2014;20:150–9.
pubmed: 23835449 pmcid: 4107817 doi: 10.1177/1073858413494269
Uddin LQ, Supekar KS, Ryali S, Menon V. Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. J Neurosci. 2011;31:18578–89.
pubmed: 22171056 pmcid: 3641286 doi: 10.1523/JNEUROSCI.4465-11.2011
Uddin LQ, Nomi JS, Hebert-Seropian B, Ghaziri J, Boucher O. Structure and function of the human insula. J Clin Neurophysiol. 2017;34:300–6.
pubmed: 28644199 pmcid: 6032992 doi: 10.1097/WNP.0000000000000377
Wang Y, Zhu L, Zou Q, Cui Q, Liao W, Duan X, et al. Frequency dependent hub role of the dorsal and ventral right anterior insula. Neuroimage. 2018;165:112–7.
pubmed: 28986206 doi: 10.1016/j.neuroimage.2017.10.004
Koob GF, Le Moal M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology. 2001;24:97–29.
pubmed: 11120394 doi: 10.1016/S0893-133X(00)00195-0
Barrett LF, Simmons WK. Interoceptive predictions in the brain. Nat Rev Neurosci. 2015;16:419–29.
pubmed: 26016744 pmcid: 4731102 doi: 10.1038/nrn3950
Pepino MY, Mennella JA. Effects of cigarette smoking and family history of alcoholism on sweet taste perception and food cravings in women. Alcohol Clin Exp Res. 2007;31:1891–9.
pubmed: 17949394 pmcid: 2268904 doi: 10.1111/j.1530-0277.2007.00519.x
Lange LA, Kampov-Polevoy AB, Garbutt JC. Sweet liking and high novelty seeking: independent phenotypes associated with alcohol-related problems. Alcohol Alcohol. 2010;45:431–6.
pubmed: 20663854 doi: 10.1093/alcalc/agq040
Kampov-Polevoy A, Garbutt JC, Janowsky D. Evidence of preference for a high-concentration sucrose solution in alcoholic men. Am J Psychiatry. 1997;154:269–70.
pubmed: 9016281 doi: 10.1176/ajp.154.2.269
Kampov-Polevoy AB, Garbutt JC, Davis CE, Janowsky DS. Preference for higher sugar concentrations and Tridimensional Personality Questionnaire scores in alcoholic and nonalcoholic men. Alcohol Clin Exp Res. 1998;22:610–4.
pubmed: 9622439 doi: 10.1111/j.1530-0277.1998.tb04300.x
Kampov-Polevoy AB, Garbutt JC, Khalitov E. Family history of alcoholism and response to sweets. Alcohol Clin Exp Res. 2003;27:1743–9.
pubmed: 14634489 doi: 10.1097/01.ALC.0000093739.05809.DD
Wronski M, Skrok-Wolska D, Samochowiec J, Ziolkowski M, Swiecicki L, Bienkowski P, et al. Perceived intensity and pleasantness of sucrose taste in male alcoholics. Alcohol Alcohol. 2007;42:75–9.
pubmed: 17267440 doi: 10.1093/alcalc/agl097
Krahn D, Grossman J, Henk H, Mussey M, Crosby R, Gosnell B. Sweet intake, sweet-liking, urges to eat, and weight change: relationship to alcohol dependence and abstinence. Addict Behav. 2006;31:622–31.
pubmed: 15990241 doi: 10.1016/j.addbeh.2005.05.056
Kranzler HR, Sandstrom KA, Van Kirk J. Sweet taste preference as a risk factor for alcohol dependence. Am J Psychiatry. 2001;158:813–5.
pubmed: 11329410 doi: 10.1176/appi.ajp.158.5.813
Tremblay KA, Bona JM, Kranzler HR. Effects of a diagnosis or family history of alcoholism on the taste intensity and hedonic value of sucrose. Am J Addict. 2009;18:494–9.
pubmed: 19874171 pmcid: 2862626 doi: 10.3109/10550490903206023
Kampov-Polevoy A, Lange L, Bobashev G, Eggleston B, Root T, Garbutt JC. Sweet-liking is associated with transformation of heavy drinking into alcohol-related problems in young adults with high novelty seeking. Alcohol Clin Exp Res. 2014;38:2119–26.
pubmed: 24962796 doi: 10.1111/acer.12458
Kampov-Polevoy A, Tzoi M, Zvartau E, Crews F, Neznanov N. Sweet liking, family history of alcoholism, blood glucose level, and alcohol craving in hospitalized alcoholics. Alcohol: Clin Exp Res. 1998;22:197А–97А.
Bujarski S, Jentsch JD, Roche DJO, Ramchandani VA, Miotto K, Ray LA. Differences in the subjective and motivational properties of alcohol across alcohol use severity: application of a novel translational human laboratory paradigm. Neuropsychopharmacology. 2018;43:1891–9.
pubmed: 29802367 pmcid: 6046045 doi: 10.1038/s41386-018-0086-9
Sloan ME, Gowin JL, Janakiraman R, Ester CD, Stoddard J, Stangl B, et al. High-risk social drinkers and heavy drinkers display similar rates of alcohol consumption. Addict Biol. 2020;25:e12734.
pubmed: 30821409 doi: 10.1111/adb.12734
Gowin JL, Sloan ME, Stangl BL, Vatsalya V, Ramchandani VA. Vulnerability for alcohol use disorder and rate of alcohol consumption. Am J Psychiatry. 2017;174:1094–101.
pubmed: 28774194 pmcid: 5667663 doi: 10.1176/appi.ajp.2017.16101180
Stangl BL, Vatsalya V, Zametkin MR, Cooke ME, Plawecki MH, O’Connor S, et al. Exposure-response relationships during free-access intravenous alcohol self-administration in nondependent drinkers: influence of alcohol expectancies and impulsivity. Int J Neuropsychopharmacol. 2017;20:31–39.
pubmed: 27742833
Zimmermann US, Mick I, Laucht M, Vitvitskiy V, Plawecki MH, Mann KF, et al. Offspring of parents with an alcohol use disorder prefer higher levels of brain alcohol exposure in experiments involving computer-assisted self-infusion of ethanol (CASE). Psychopharmacology. 2009;202:689–97.
pubmed: 18936917 doi: 10.1007/s00213-008-1349-7
Quinn PD, Fromme K. Subjective response to alcohol challenge: a quantitative review. Alcohol Clin Exp Res. 2011;35:1759–70.
pubmed: 21777258 pmcid: 3183255 doi: 10.1111/j.1530-0277.2011.01521.x
King AC, de Wit H, McNamara PJ, Cao D. Rewarding, stimulant, and sedative alcohol responses and relationship to future binge drinking. Arch Gen Psychiatry. 2011;68:389–99.
pubmed: 21464363 pmcid: 4633413 doi: 10.1001/archgenpsychiatry.2011.26
King AC, McNamara PJ, Hasin DS, Cao D. Alcohol challenge responses predict future alcohol use disorder symptoms: a 6-year prospective study. Biol Psychiatry. 2014;75:798–806.
pubmed: 24094754 doi: 10.1016/j.biopsych.2013.08.001

Auteurs

Jonathan Alessi (J)

Medical Neuroscience Graduate Program, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.

Mario Dzemidzic (M)

Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA.
Department of Radiology, Indiana University School of Medicine, Indianapolis, IN, USA.

Katherine Benson (K)

Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA.
Clinical Psychology Graduate Program, Department of Psychology and Neuroscience, University of North Carolina- Chapel Hill, Chapel Hill, NC, USA.

George Chittum (G)

Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA.
Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.

Ann Kosobud (A)

Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA.

Jaroslaw Harezlak (J)

Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA.

Martin H Plawecki (MH)

Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA.
Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.

Sean J O'Connor (SJ)

Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA.
Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.

David A Kareken (DA)

Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA. dkareken@iu.edu.
Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA. dkareken@iu.edu.
Department of Radiology, Indiana University School of Medicine, Indianapolis, IN, USA. dkareken@iu.edu.
Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA. dkareken@iu.edu.

Classifications MeSH