Air quality prediction model based on mRMR-RF feature selection and ISSA-LSTM.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
07 Aug 2023
Historique:
received: 21 04 2023
accepted: 31 07 2023
medline: 8 8 2023
pubmed: 8 8 2023
entrez: 7 8 2023
Statut: epublish

Résumé

Severe air pollution poses a significant threat to public safety and human health. Predicting future air quality conditions is crucial for implementing pollution control measures and guiding residents' activity choices. However, traditional single-module machine learning models suffer from long training times and low prediction accuracy. To improve the accuracy of air quality forecasting, this paper proposes a ISSA-LSTM model-based approach for predicting the air quality index (AQI). The model consists of three main components: random forest (RF) and mRMR, improved sparrow search algorithm (ISSA), and long short-term memory network (LSTM). Firstly, RF-mRMR is used to select the influential variables affecting AQI, thereby enhancing the model's performance. Next, ISSA algorithm is employed to optimize the hyperparameters of LSTM, further improving the model's performance. Finally, LSTM model is utilized to predict AQI concentrations. Through comparative experiments, it is demonstrated that the ISSA-LSTM model outperforms other models in terms of RMSE and R

Identifiants

pubmed: 37550459
doi: 10.1038/s41598-023-39838-4
pii: 10.1038/s41598-023-39838-4
pmc: PMC10406845
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

12825

Informations de copyright

© 2023. Springer Nature Limited.

Références

An, J. et al. Numerical regional air quality forecast tests over the mainland of China. Water Air Soil Pollut. 130, 1781–1786. https://doi.org/10.1023/A:1013984708503 (2001).
doi: 10.1023/A:1013984708503
Taheri Shahraiyni, H. & Sodoudi, S. Statistical modeling approaches for PM10 prediction in urban areas; a review of 21st-century studies. Atmosphere 7, 15. https://doi.org/10.3390/atmos7020015 (2016).
doi: 10.3390/atmos7020015
Zhang, G. P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175. https://doi.org/10.1016/S0925-2312(01)00702-0 (2003).
doi: 10.1016/S0925-2312(01)00702-0
Slini, T., Karatzas, K. & Moussiopoulos, N. Statistical analysis of environmental data as the basis of forecasting: An air quality application. Sci. Total Environ. 288, 227–237. https://doi.org/10.1016/s0048-9697(01)00991-3 (2002).
doi: 10.1016/s0048-9697(01)00991-3 pubmed: 11991526
Zhu, S. et al. Daily air quality index forecasting with hybrid models: A case in China. Environ. Pollut. 231, 1232–1244. https://doi.org/10.1016/j.envpol.2017.08.069 (2017).
doi: 10.1016/j.envpol.2017.08.069 pubmed: 28939124
Jaiswal, J. K. & Samikannu, R. Application of random forest algorithm on feature subset selection and classification and regression. In Proceedings of the 2017 World Congress on Computing and Communication Technologies (WCCCT), 2017/02 (2017).
Dai, H., Huang, G., Wang, J. & Zeng, H. VAR-tree model based spatio-temporal characterization and prediction of O3 concentration in China. Ecotoxicol. Environ. Saf. 257, 114960. https://doi.org/10.1016/j.ecoenv.2023.114960 (2023).
doi: 10.1016/j.ecoenv.2023.114960 pubmed: 37116452
Yu, R., Yang, Y., Yang, L., Han, G. & Move, O. A. RAQ—a random forest approach for predicting air quality in urban sensing systems. Sensors 16, 86. https://doi.org/10.3390/s16010086 (2016).
doi: 10.3390/s16010086 pubmed: 26761008 pmcid: 4732119
Guojun, S., Xiaodan, G., Xiao, Y. & Shuai, L. ARIMA-SVM combination prediction of PM2.5 concentration in Shenyang. China Environ. Sci. 38, 4031–4039. https://doi.org/10.19674/j.cnki.issn1000-6923.2018.0445 (2018).
doi: 10.19674/j.cnki.issn1000-6923.2018.0445
Díaz-Robles, L. A. et al. A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile. Atmos. Environ. 42, 8331–8340. https://doi.org/10.1016/j.atmosenv.2008.07.020 (2008).
doi: 10.1016/j.atmosenv.2008.07.020
Shuai, G., Hong-ping, H., Yang, L. & Yan-ping, B. Prediction of air quality index based on MFO-SVM. J. North Univ. China (Nat. Sci. Ed.) 39, 373–379 (2018).
Yan, Y., Yunpeng, Z., Kai-yue, L. & Guangmei, Y. Forecast of Xi’an ambient air quality based on BP neural network. Electron. Des. Eng. 21, 54–57. https://doi.org/10.14022/j.cnki.dzsjgc.2013.21.007 (2013).
doi: 10.14022/j.cnki.dzsjgc.2013.21.007
Jiang, Z., Mao, B., Meng, X., Du, X., Liu, S. & Li, S. An air quality forecast model based on the BP neural network of the samples self-organization clustering. In Proceedings of the 2010 Sixth International Conference on Natural Computation, 2010/08 (2010).
Shengnan, B. & Xiaoliu, S. PM2.5 prediction base on LSTM recurrent neural network. Comput. Appl. Softw. 36, 67–70+104 (2019).
Zhang, Z., Zeng, Y. & Yan, K. A hybrid deep learning technology for PM2.5 air quality forecasting. Environ. Sci. Pollut. Res. 28, 39409–39422. https://doi.org/10.1007/s11356-021-12657-8 (2021).
doi: 10.1007/s11356-021-12657-8
Belavadi, S. V., Rajagopal, S., Ranjani, R. & Mohan, R. Air quality forecasting using LSTM RNN and wireless sensor networks. Procedia Comput. Sci. 170, 241–248. https://doi.org/10.1016/j.procs.2020.03.036 (2020).
doi: 10.1016/j.procs.2020.03.036
Gilik, A., Ogrenci, A. S. & Ozmen, A. Air quality prediction using CNN+LSTM-based hybrid deep learning architecture. Environ. Sci. Pollut. Res. 29, 11920–11938. https://doi.org/10.1007/s11356-021-16227-w (2021).
doi: 10.1007/s11356-021-16227-w
Shami, T. M. et al. Particle swarm optimization: A comprehensive survey. IEEE Access 10, 10031–10061. https://doi.org/10.1109/ACCESS.2022.3142859 (2022).
doi: 10.1109/ACCESS.2022.3142859
Mirjalili, S. & Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 (2016).
doi: 10.1016/j.advengsoft.2016.01.008
Jiang, F., Han, X., Zhang, W. & Chen, G. Atmospheric PM2.5 prediction using DeepAR optimized by sparrow search algorithm with opposition-based and fitness-based learning. Atmosphere 12, 894. https://doi.org/10.3390/atmos12070894 (2021).
doi: 10.3390/atmos12070894
Mahdavi, S., Rahnamayan, S. & Deb, K. Opposition based learning: A literature review. Swarm Evol. Comput. 39, 1–23. https://doi.org/10.1016/j.swevo.2017.09.010 (2018).
doi: 10.1016/j.swevo.2017.09.010
Li, J., Chen, J. & Shi, J. Evaluation of new sparrow search algorithms with sequential fusion of improvement strategies. Comput. Ind. Eng. 182, 109425. https://doi.org/10.1016/j.cie.2023.109425 (2023).
doi: 10.1016/j.cie.2023.109425
Sakar, C. O. & Kursun, O. Telediagnosis of Parkinson’s disease using measurements of dysphonia. J. Med. Syst. 34, 591–599. https://doi.org/10.1007/s10916-009-9272-y (2010).
doi: 10.1007/s10916-009-9272-y pubmed: 20703913
Gu, Q., Li, X. & Jiang, S. Hybrid genetic grey wolf algorithm for large-scale global optimization. Complexity 2019, 1–18. https://doi.org/10.1155/2019/2653512 (2019).
doi: 10.1155/2019/2653512
Sun, Y. & Liu, J. AQI prediction based on CEEMDAN-ARMA-LSTM. Sustainability 14, 12182 (2022).
doi: 10.3390/su141912182

Auteurs

Huiyong Wu (H)

College of Science, Shenyang University of Chemical Technology, Shenyang, Liaoning, China.

Tongtong Yang (T)

College of Science, Shenyang University of Chemical Technology, Shenyang, Liaoning, China. 15376222325@163.com.

Hongkun Li (H)

College of Science, Shenyang University of Chemical Technology, Shenyang, Liaoning, China.

Ziwei Zhou (Z)

College of Science, Shenyang University of Chemical Technology, Shenyang, Liaoning, China.

Classifications MeSH