Monte Carlo confidence intervals for the indirect effect with missing data.

Full-information maximum likelihood Indirect effect Mediation Missing at random Missing completely at random Monte Carlo method Multiple imputation Nonparametric bootstrap

Journal

Behavior research methods
ISSN: 1554-3528
Titre abrégé: Behav Res Methods
Pays: United States
ID NLM: 101244316

Informations de publication

Date de publication:
07 Aug 2023
Historique:
accepted: 21 03 2023
medline: 8 8 2023
pubmed: 8 8 2023
entrez: 7 8 2023
Statut: aheadofprint

Résumé

Missing data is a common occurrence in mediation analysis. As a result, the methods used to construct confidence intervals around the indirect effect should consider missing data. Previous research has demonstrated that, for the indirect effect in data with complete cases, the Monte Carlo method performs as well as nonparametric bootstrap confidence intervals (see MacKinnon et al., Multivariate Behavioral Research, 39(1), 99-128, 2004; Preacher & Selig, Communication Methods and Measures, 6(2), 77-98, 2012; Tofighi & MacKinnon, Structural Equation Modeling: A Multidisciplinary Journal, 23(2), 194-205, 2015). In this manuscript, we propose a simple, fast, and accurate two-step approach for generating confidence intervals for the indirect effect, in the presence of missing data, based on the Monte Carlo method. In the first step, an appropriate method, for example, full-information maximum likelihood or multiple imputation, is used to estimate the parameters and their corresponding sampling variance-covariance matrix in a mediation model. In the second step, the sampling distribution of the indirect effect is simulated using estimates from the first step. A confidence interval is constructed from the resulting sampling distribution. A simulation study with various conditions is presented. Implications of the results for applied research are discussed.

Identifiants

pubmed: 37550469
doi: 10.3758/s13428-023-02114-4
pii: 10.3758/s13428-023-02114-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Psychonomic Society, Inc.

Références

Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling. Psychology Press. https://doi.org/10.4324/9781315827414
Arbuckle, J. L. (2021). Amos 28.0 User’s Guide. Chicago, IBM SPSS.
Aroian, L. A. (1947). The probability function of the product of two normally distributed variables. The Annals of Mathematical Statistics, 18(2), 265–271. https://doi.org/10.1214/aoms/1177730442
doi: 10.1214/aoms/1177730442
Asparouhov, T., & Muthén, B. O. (2022). Multiple imputation with Mplus (Tech. Rep.). http://www.statmodel.com/download/Imputations7.pdf
Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173
doi: 10.1037/0022-3514.51.6.1173 pubmed: 3806354
Bauer, D. J., Preacher, K. J., & Gil, K. M. (2006). Conceptualizing and testing random indirect effects and moderated mediation in multilevel models: New procedures and recommendations. Psychological Methods, 11(2), 142–163. https://doi.org/10.1037/1082-989x.11.2.142
doi: 10.1037/1082-989x.11.2.142 pubmed: 16784335
Biesanz, J. C., Falk, C. F., & Savalei, V. (2010). Assessing mediational models: Testing and interval estimation for indirect effects. Multivariate Behavioral Research, 45(4), 661–701. https://doi.org/10.1080/00273171.2010.498292
doi: 10.1080/00273171.2010.498292 pubmed: 26735714
Blanca, M. J., Arnau, J., López-Montiel, D., Bono, R., & Bendayan, R. (2013). Skewness and kurtosis in real data samples. Methodology, 9(2), 78–84. https://doi.org/10.1027/1614-2241/a000057
doi: 10.1027/1614-2241/a000057
Bollen, K. A., & Stine, R. (1990). Direct and indirect effects: Classical and bootstrap estimates of variability. Sociological Methodology, 20, 115. https://doi.org/10.2307/271084
doi: 10.2307/271084
Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical Psychology, 31(2), 144–152. https://doi.org/10.1111/j.2044-8317.1978.tb00581.x
doi: 10.1111/j.2044-8317.1978.tb00581.x
Cheung, G. W., & Lau, R. S. (2007). Testing mediation and suppression effects of latent variables. Organizational Research Methods, 11(2), 296–325. https://doi.org/10.1177/1094428107300343
doi: 10.1177/1094428107300343
Cheung, M.W.-L. (2009a). Comparison of methods for constructing confidence intervals of standardized indirect effects. Behavior Research Methods, 41(2), 425–438. https://doi.org/10.3758/brm.41.2.425
doi: 10.3758/brm.41.2.425 pubmed: 19363183
Cheung, M.W.-L. (2009b). Constructing approximate confidence intervals for parameters with structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 16(2), 267–294. https://doi.org/10.1080/10705510902751291
doi: 10.1080/10705510902751291
Cheung, M.W.-L. (2021). Synthesizing indirect effects in mediation models with meta-analytic methods. Alcohol and Alcoholism, 57(1), 5–15. https://doi.org/10.1093/alcalc/agab044
doi: 10.1093/alcalc/agab044
Cochran, W. G. (1952). The [Formula: see text] test of goodness of fit. The Annals of Mathematical Statistics, 23(3), 315–345. https://doi.org/10.1214/aoms/1177729380
doi: 10.1214/aoms/1177729380
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed). Routledge. https://doi.org/10.4324/9780203771587
Craig, C. C. (1936). On the frequency function of [Formula: see text]. The Annals of Mathematical Statistics, 7(1), 1–15. https://doi.org/10.1214/aoms/1177732541
doi: 10.1214/aoms/1177732541
Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge University Press. https://doi.org/10.1017/CBO9780511802843
doi: 10.1017/CBO9780511802843
Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82(397), 171–185. https://doi.org/10.1080/01621459.1987.10478410
doi: 10.1080/01621459.1987.10478410
Efron, B. (1988). Bootstrap confidence intervals: Good or bad? Psychological Bulletin, 104(2), 293–296. https://doi.org/10.1037/0033-2909.104.2.293
doi: 10.1037/0033-2909.104.2.293
Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. Chapman & Hall. https://doi.org/10.1201/9780429246593
doi: 10.1201/9780429246593
Enders, C. K. (2010). Applied missing data analysis. Guilford Publications.
Fritz, M. S., & MacKinnon, D. P. (2007). Required sample size to detect the mediated effect. Psychological Science, 18(3), 233–239. https://doi.org/10.1111/j.1467-9280.2007.01882.x
doi: 10.1111/j.1467-9280.2007.01882.x pubmed: 17444920
Goodman, L. A. (1960). On the exact variance of products. Journal of the American Statistical Association, 55(292), 708–713. https://doi.org/10.1080/01621459.1960.10483369
doi: 10.1080/01621459.1960.10483369
Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8(3), 206–213. https://doi.org/10.1007/s11121-007-0070-9
doi: 10.1007/s11121-007-0070-9 pubmed: 17549635
Hayes, A. F. (2022). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (3rd ed.). Guilford Publications.
Hayes, A. F., & Scharkow, M. (2013). The relative trustworthiness of inferential tests of the indirect effect in statistical mediation analysis. Prevention Science, 24(10), 1918–1927. https://doi.org/10.1177/0956797613480187
doi: 10.1177/0956797613480187
Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel, Y. (2022). semTools: Useful tools for structural equation modeling. https://CRAN.R-project.org/package=semTools
Koopman, J., Howe, M., & Hollenbeck, J. R. (2014). Pulling the Sobel test up by its bootstraps. In More statistical and methodological myths and urban legends: Doctrine, verity and fable in organizational and social sciences (pp. 224–243). Routledge/Taylor & Francis Group. 10.4324/9780203775851
Koopman, J., Howe, M., Hollenbeck, J. R., & Sin, H.-P. (2015). Small sample mediation testing: Misplaced confidence in bootstrapped confidence intervals. Journal of Applied Psychology, 100(1), 194–202. https://doi.org/10.1037/a0036635
doi: 10.1037/a0036635 pubmed: 24731180
Li, K. H., Raghunathan, T. E., & Rubin, D. B. (1991). Large-sample significance levels from multiply imputed data using moment-based statistics and an F reference distribution. Journal of the American Statistical Association, 86(416), 1065–1073. https://doi.org/10.1080/01621459.1991.10475152
doi: 10.1080/01621459.1991.10475152
Little, R. J. A. & Rubin, D. B. (2019). Statistical analysis with missing data (3rd ed.). Wiley. https://doi.org/10.1002/9781119482260
MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. Erlbaum Psych Press. https://doi.org/10.4324/9780203809556
doi: 10.4324/9780203809556
MacKinnon, D. P., Fritz, M. S., Williams, J., & Lockwood, C. M. (2007). Distribution of the product confidence limits for the indirect effect: Program PRODCLIN. Behavior Research Methods, 39(3), 384–389. https://doi.org/10.3758/bf03193007
doi: 10.3758/bf03193007 pubmed: 17958149 pmcid: 2819369
MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7(1), 83–104. https://doi.org/10.1037/1082-989x.7.1.83
doi: 10.1037/1082-989x.7.1.83 pubmed: 11928892 pmcid: 2819363
MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39(1), 99–128. https://doi.org/10.1207/s15327906mbr3901_4
doi: 10.1207/s15327906mbr3901_4 pubmed: 20157642 pmcid: 2821115
Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105(1), 156–166. https://doi.org/10.1037/0033-2909.105.1.156
doi: 10.1037/0033-2909.105.1.156
Muthén, L. K. & Muthén, B. O. (2017). Mplus user’s guide (8th ed.). Muthén & Muthén.
Pawitan, Y. (2013). In all likelihood: Statistical modelling and inference using likelihood. Oxford University Press.
Pesigan, I. J. A., & Cheung, S. F. (2020). SEM-based methods to form confidence intervals for indirect effect: Still applicable given nonnormality, under certain conditions. Frontiers in Psychology, 11,. https://doi.org/10.3389/fpsyg.2020.571928
Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of Educational Research, 74(4), 525–556. https://doi.org/10.3102/00346543074004525
doi: 10.3102/00346543074004525
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891. https://doi.org/10.3758/brm.40.3.879
doi: 10.3758/brm.40.3.879 pubmed: 18697684
Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36(4), 717–731. https://doi.org/10.3758/bf03206553
doi: 10.3758/bf03206553
Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for indirect effects. Communication Methods and Measures, 6(2), 77–98. https://doi.org/10.1080/19312458.2012.679848
doi: 10.1080/19312458.2012.679848
R Core Team. (2022). R: A language and environment for statistical computing.R Foundation for Statistical Computing. https://www.R-project.org/
Raghunathan, T. E., Lepkowski, J. M., Hoewyk, J. V., & Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27(1), 85–95.
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2). https://doi.org/10.18637/jss.v048.i02
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581–592. https://doi.org/10.1093/biomet/63.3.581
doi: 10.1093/biomet/63.3.581
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470316696
Savalei, V., & Rosseel, Y. (2021). Computational options for standard errors and test statistics with incomplete normal and nonnormal data in SEM. Structural Equation Modeling: A Multidisciplinary Journal, 29(2), 163–181. https://doi.org/10.1080/10705511.2021.1877548
doi: 10.1080/10705511.2021.1877548
Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. Chapman and Hall/CRC. https://doi.org/10.1201/9780367803025
doi: 10.1201/9780367803025
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7(2), 147–177. https://doi.org/10.1037/1082-989x.7.2.147
doi: 10.1037/1082-989x.7.2.147 pubmed: 12090408
Schouten, R. M., Lugtig, P., & Vink, G. (2018). Generating missing values for simulation purposes: A multivariate amputation procedure. Journal of Statistical Computation and Simulation, 88(15), 2909–2930. https://doi.org/10.1080/00949655.2018.1491577
Serlin, R. C. (2000). Testing for robustness in Monte Carlo studies. Psychological Methods, 5(2), 230–240. https://doi.org/10.1037/1082-989x.5.2.230
doi: 10.1037/1082-989x.5.2.230 pubmed: 10937332
Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7(4), 422–445. https://doi.org/10.1037/1082-989x.7.4.422
doi: 10.1037/1082-989x.7.4.422 pubmed: 12530702
Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological Methodology, 13, 290. https://doi.org/10.2307/270723
doi: 10.2307/270723
Sobel, M. E. (1987). Direct and indirect effects in linear structural equation models. Sociological Methods & Research, 16(1), 155–176. https://doi.org/10.1177/0049124187016001006
doi: 10.1177/0049124187016001006
Sobel, M. E. (1986). Some new results on indirect effects and their standard errors in covariance structure models. Sociological Methodology, 16, 159. https://doi.org/10.2307/270922
doi: 10.2307/270922
Taylor, A. B., MacKinnon, D. P., & Tein, J.-Y. (2007). Tests of the three-path mediated effect. Organizational Research Methods, 11(2), 241–269. https://doi.org/10.1177/1094428107300344
doi: 10.1177/1094428107300344
Tofighi, D., & Kelley, K. (2020). Improved inference in mediation analysis: Introducing the model-based constrained optimization procedure. Psychological Methods, 25, 496–515. https://doi.org/10.1037/met0000259
Tofighi, D., & Kelley, K. (2019). Indirect effects in sequential mediation models: Evaluating methods for hypothesis testing and confidence interval formation. Multivariate Behavioral Research, 55(2), 188–210. https://doi.org/10.1080/00273171.2019.1618545
doi: 10.1080/00273171.2019.1618545 pubmed: 31179751 pmcid: 6901816
Tofighi, D., & MacKinnon, D. P. (2015). Monte Carlo confidence intervals for complex functions of indirect effects. Structural Equation Modeling: A Multidisciplinary Journal, 23(2), 194–205. https://doi.org/10.1080/10705511.2015.1057284
doi: 10.1080/10705511.2015.1057284
van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman; Hall/CRC. https://doi.org/10.1201/9780429492259
van Buuren, S., Brand, J. P. L., Groothuis-Oudshoorn, C. G. M., & Rubin, D. B. (2006). Fully conditional specification in multivariate imputation. Journal of Statistical Computation and Simulation, 76(12), 1049–1064. https://doi.org/10.1080/10629360600810434
doi: 10.1080/10629360600810434
van Buuren, S. & Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3). https://doi.org/10.18637/jss.v045.i03
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. Springer, New York. https://doi.org/10.1007/978-0-387-21706-2
doi: 10.1007/978-0-387-21706-2
Venzon, D. J., & Moolgavkar, S. H. (1988). A method for computing profile-likelihood-based confidence intervals. Applied Statistics, 37(1), 87. https://doi.org/10.2307/2347496
doi: 10.2307/2347496
Wu, W., & Jia, F. (2013). A new procedure to test mediation with missing data through nonparametric bootstrapping and multiple imputation. Multivariate Behavioral Research, 48(5), 663–691. https://doi.org/10.1080/00273171.2013.816235
doi: 10.1080/00273171.2013.816235 pubmed: 26741058
Yuan, K.-H., & Bentler, P. M. (2000). Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. Sociological Methodology, 30(1), 165–200. https://doi.org/10.1111/0081-1750.00078
doi: 10.1111/0081-1750.00078
Yzerbyt, V., Muller, D., Batailler, C., & Judd, C. M. (2018). New recommendations for testing indirect effects in mediational models: The need to report and test component paths. Journal of Personality and Social Psychology, 115(6), 929–943. https://doi.org/10.1037/pspa0000132
Zhang, Z., & Wang, L. (2012). Methods for mediation analysis with missing data. Psychometrika, 78(1), 154–184. https://doi.org/10.1007/s11336-012-9301-5
Zhang, Z., Wang, L., & Tong, X. (2015). Mediation analysis with missing data through multiple imputation and bootstrap. In Quantitative Psychology Research (pp. 341–355). Springer International Publishing. https://doi.org/10.1007/978-3-319-19977-1_24

Auteurs

Ivan Jacob Agaloos Pesigan (IJA)

Department of Psychology, Faculty of Social Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China. i.j.a.pesigan@connect.um.edu.mo.

Shu Fai Cheung (SF)

Department of Psychology, Faculty of Social Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China.

Classifications MeSH