Transcriptomic comparison of bone marrow CD34 + cells and peripheral blood neutrophils from ET patients with JAK2 or CALR mutations.
Bone marrow
CALR
Essential thrombocythemia
JAK2
Myeloproliferative neoplasms
Peripheral blood
Journal
BMC genomic data
ISSN: 2730-6844
Titre abrégé: BMC Genom Data
Pays: England
ID NLM: 101775394
Informations de publication
Date de publication:
07 08 2023
07 08 2023
Historique:
received:
02
12
2022
accepted:
25
07
2023
medline:
9
8
2023
pubmed:
8
8
2023
entrez:
7
8
2023
Statut:
epublish
Résumé
Essential thrombocythemia (ET) is one of the most common types of Ph-negative myeloproliferative neoplasms, an infrequent group of blood cancers that arise from a CD34 + hematopoietic stem cell (HSC) in the bone marrow (BM) primarily due to driver mutations in JAK2, CALR or MPL. These aberrations result in an overproduction of mature myeloid cells in peripheral blood (PB). To date, no targeted therapies have been approved for ET patients, so the study of the molecular mechanisms behind the disease and the identification of new therapeutic targets may be of interest. For this reason, in this study, we have compared the transcriptomic profile of undifferentiated CD34 + cells and mature myeloid cells from ET patients (CALR and JAK2-mutated) and healthy donors deposited in publicly available databases. The study of the similarities and differences between these samples might help to better understand the molecular mechanisms behind the disease according to the degree of maturation of the malignant clone and the type of mutation and ultimately help identify new therapeutic targets for these patients. The results show that most of the altered hallmarks in neutrophils were also found in CD34 + cells. However, only a few genes showed a similar aberrant expression pattern in both types of cells. We have identified a signature of six genes common to patients with CALR and JAK2 mutations (BPI, CRISP3, LTF, MMP8, and PTGS1 upregulated, and PBXIP1 downregulated), a different signature of seven genes for patients with CALR mutations (BMP6, CEACAM8, ITK, LCN2, and PRG2 upregulated, and MAN1A1 and MME downregulated) and a signature of 13 genes for patients with JAK2 mutations (ARG1, CAST, CD177, CLEC5A, DAPP1, EPS15, IL18RAP, OLFM4, OLR1, RIOK3, SELP, and THBS1 upregulated, and IGHM downregulated). Our results highlight transcriptomic similarities and differences in ET patients according to the degree of maturation of the malignant clone and the type of mutation. The genes and processes altered in both CD34 + cells and mature neutrophils may reveal altered sustained processes that could be studied as future therapeutic targets for ET patients.
Sections du résumé
BACKGROUND
Essential thrombocythemia (ET) is one of the most common types of Ph-negative myeloproliferative neoplasms, an infrequent group of blood cancers that arise from a CD34 + hematopoietic stem cell (HSC) in the bone marrow (BM) primarily due to driver mutations in JAK2, CALR or MPL. These aberrations result in an overproduction of mature myeloid cells in peripheral blood (PB). To date, no targeted therapies have been approved for ET patients, so the study of the molecular mechanisms behind the disease and the identification of new therapeutic targets may be of interest. For this reason, in this study, we have compared the transcriptomic profile of undifferentiated CD34 + cells and mature myeloid cells from ET patients (CALR and JAK2-mutated) and healthy donors deposited in publicly available databases. The study of the similarities and differences between these samples might help to better understand the molecular mechanisms behind the disease according to the degree of maturation of the malignant clone and the type of mutation and ultimately help identify new therapeutic targets for these patients.
RESULTS
The results show that most of the altered hallmarks in neutrophils were also found in CD34 + cells. However, only a few genes showed a similar aberrant expression pattern in both types of cells. We have identified a signature of six genes common to patients with CALR and JAK2 mutations (BPI, CRISP3, LTF, MMP8, and PTGS1 upregulated, and PBXIP1 downregulated), a different signature of seven genes for patients with CALR mutations (BMP6, CEACAM8, ITK, LCN2, and PRG2 upregulated, and MAN1A1 and MME downregulated) and a signature of 13 genes for patients with JAK2 mutations (ARG1, CAST, CD177, CLEC5A, DAPP1, EPS15, IL18RAP, OLFM4, OLR1, RIOK3, SELP, and THBS1 upregulated, and IGHM downregulated).
CONCLUSIONS
Our results highlight transcriptomic similarities and differences in ET patients according to the degree of maturation of the malignant clone and the type of mutation. The genes and processes altered in both CD34 + cells and mature neutrophils may reveal altered sustained processes that could be studied as future therapeutic targets for ET patients.
Identifiants
pubmed: 37550636
doi: 10.1186/s12863-023-01142-5
pii: 10.1186/s12863-023-01142-5
pmc: PMC10408115
doi:
Substances chimiques
Calreticulin
0
CLEC5A protein, human
0
Receptors, Cell Surface
0
Lectins, C-Type
0
JAK2 protein, human
EC 2.7.10.2
Janus Kinase 2
EC 2.7.10.2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
40Informations de copyright
© 2023. BioMed Central Ltd., part of Springer Nature.
Références
Guijarro-Hernández A, Vizmanos JL. A broad overview of signaling in Ph-Negative Classic Myeloproliferative Neoplasms. Cancers. 2021;13:984. https://doi.org/10.3390/cancers13050984 .
doi: 10.3390/cancers13050984
pubmed: 33652860
pmcid: 7956519
Mead AJ, Mullally A. Myeloproliferative neoplasm stem cells. Blood. 2017;129:1607–16. https://doi.org/10.1182/blood-2016-10-696005 .
doi: 10.1182/blood-2016-10-696005
pubmed: 28159736
pmcid: 5413298
Tefferi A, Pardanani A. Essential thrombocythemia. N Engl J Med. 2019;381:2135–44. https://doi.org/10.1056/NEJMcp1816082 .
doi: 10.1056/NEJMcp1816082
pubmed: 31774958
Szuber N, Mudireddy M, Nicolosi M, Penna D, Vallapureddy RR, Lasho TL et al. 3023 Mayo Clinic Patients With Myeloproliferative Neoplasms: Risk-Stratified Comparison of Survival and Outcomes Data Among Disease Subgroups. Mayo Clin Proc. 2019;94:599–610. https://doi.org/10.1016/j.mayocp.2018.08.022 .
Li B, Rampal RK, Xiao Z. Targeted therapies for myeloproliferative neoplasms. Biomark Res. 2019;7:15. https://doi.org/10.1186/s40364-019-0166-y .
doi: 10.1186/s40364-019-0166-y
pubmed: 31346467
pmcid: 6636147
Harrison CN, Mead AJ, Panchal A, Fox S, Yap C, Gbandi E, et al. Ruxolitinib vs best available therapy for ET intolerant or resistant to hydroxycarbamide. Blood. 2017;130:1889–97. https://doi.org/10.1182/blood-2017-05-785790 .
doi: 10.1182/blood-2017-05-785790
pubmed: 29074595
pmcid: 6410531
Rampal R, Al-Shahrour F, Abdel-Wahab O, Patel JP, Brunel JP, Mermel CH, et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood. 2014;123:e123–33. https://doi.org/10.1182/blood-2014-02-554634 .
doi: 10.1182/blood-2014-02-554634
pubmed: 24740812
pmcid: 4041169
Zini R, Guglielmelli P, Pietra D, Rumi E, Rossi C, Rontauroli S, et al. CALR mutational status identifies different disease subtypes of essential thrombocythemia showing distinct expression profiles. Blood Cancer J. 2017;12:638. https://doi.org/10.1038/s41408-017-0010-2 .
doi: 10.1038/s41408-017-0010-2
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov (Camb). 2021;2:100141. https://doi.org/10.1016/j.xinn.2021.100141 .
doi: 10.1016/j.xinn.2021.100141
Dolgalev I. Msigdbr: MSigDB gene sets for multiple organisms in a tidy data format. R package version 7.5.1. 2022. https://igordot.github.io/msigdbr/ .
Lennartsson A, Pieters K, Ullmark T, Vidovic K, Gullberg U. AML-1, PU.1, and Sp3 regulate expression of human bactericidal/permeability-increasing protein. Biochem Biophys Res Commun. 2003;311:853–63. https://doi.org/10.1016/j.bbrc.2003.10.067 .
doi: 10.1016/j.bbrc.2003.10.067
pubmed: 14623259
Yokota A, Huo L, Lan F, Wu J, Huang G. The clinical, molecular, and mechanistic basis of RUNX1 mutations identified in hematological malignancies. Mol Cells. 2020;43:145–52. https://doi.org/10.14348/molcells.2019.0252 .
doi: 10.14348/molcells.2019.0252
pubmed: 31964134
pmcid: 7057846
Sakurai H, Harada Y, Ogata Y, Kagiyama Y, Shingai N, Doki N, et al. Overexpression of RUNX1 short isoform has an important role in the development of myelodysplastic/myeloproliferative neoplasms. Blood Adv. 2017;1:1382–6. https://doi.org/10.1182/bloodadvances.2016002725 .
doi: 10.1182/bloodadvances.2016002725
pubmed: 29296779
pmcid: 5727847
Guglielmelli P, Bartalucci N, Contini E, Rotunno G, Pacilli A, Romagnoli S, et al. Involvement of RUNX1 pathway is a common event in the leukemic transformation of chronic myeloproliferative neoplasms (MPNs). Blood. 2019;134(Supplement1):2968. https://doi.org/10.1182/blood-2019-129094 .
doi: 10.1182/blood-2019-129094
Irino T, Uemura M, Yamane H, Umemura S, Utsumi T, Kakazu N, et al. JAK2 V617F-dependent upregulation of PU.1 expression in the peripheral blood of myeloproliferative neoplasm patients. PLoS ONE. 2011;6:e22148. https://doi.org/10.1371/journal.pone.0022148 .
doi: 10.1371/journal.pone.0022148
pubmed: 21789226
pmcid: 3138766
Van Loo PF, Bouwman P, Ling KW, Middendorp S, Suske G, Grosveld F, et al. Impaired hematopoiesis in mice lacking the transcription factor Sp3. Blood. 2003;102:858–66. https://doi.org/10.1182/blood-2002-06-1848 .
doi: 10.1182/blood-2002-06-1848
pubmed: 12676787
Schardt JA, Keller M, Seipel K, Pabst T. Functional interplay of SP family members and nuclear factor Y is essential for transcriptional activation of the human calreticulin gene. Biochim Biophys Acta. 2015;1849:1188–97. https://doi.org/10.1016/j.bbagrm.2015.07.003 .
doi: 10.1016/j.bbagrm.2015.07.003
pubmed: 26162987
Skov V, Burton M, Thomassen M, Stauffer Larsen T, Riley CH, Brinch Madelung A, et al. A 7-gene signature depicts the biochemical profile of early prefibrotic myelofibrosis. PLoS ONE. 2016;11:e0161570. https://doi.org/10.1371/journal.pone.0161570 .
doi: 10.1371/journal.pone.0161570
pubmed: 27579896
pmcid: 5007012
Leng D, Miao R, Huang X, Wang Y. In silico analysis identifies CRISP3 as a potential peripheral blood biomarker for multiple myeloma: from data modeling to validation with RT-PCR. Oncol Lett. 2018;15:5167–74. https://doi.org/10.3892/ol.2018.7969 .
doi: 10.3892/ol.2018.7969
pubmed: 29552153
pmcid: 5840518
Skov V, Thomassen M, Kjær L, Riley C, Stauffer Larsen T, Bjerrum OW, et al. Extracellular matrix-related genes are deregulated in peripheral blood from patients with myelofibrosis and related neoplasms. Blood. 2018;132:5491. https://doi.org/10.1182/blood-2018-99-117122 .
doi: 10.1182/blood-2018-99-117122
Steinl C, Essl M, Schreiber TD, Geiger K, Prokop L, Stevanović S, et al. Release of matrix metalloproteinase-8 during physiological trafficking and induced mobilization of human hematopoietic stem cells. Stem Cells Dev. 2013;22:1307–18. https://doi.org/10.1089/scd.2012.0063 .
doi: 10.1089/scd.2012.0063
pubmed: 23259856
Yamada Y, Amagasaki T, Jacobsen DW, Green R. Lactoferrin binding by leukemia cell lines. Blood. 1987;70:264–70.
doi: 10.1182/blood.V70.1.264.264
pubmed: 3036277
Butler TW, Heck LW, Huster WJ, Grossi CE, Barton JC. Assessment of total immunoreactive lactoferrin in hematopoietic cells using flow cytometry. J Immunol Methods. 1988;108:159–70. https://doi.org/10.1016/0022-1759(88)90415-2 .
doi: 10.1016/0022-1759(88)90415-2
pubmed: 3280685
Brown RD, Rickard KA, Kronenberg H. Lactoferrin in the myeloproliferative disorders: a search for granulopoietic regulator defects. Br J Haematol. 1985;59:617–26. https://doi.org/10.1111/j.1365-2141.1985.tb07356.x .
doi: 10.1111/j.1365-2141.1985.tb07356.x
pubmed: 2985107
Müller CI, Luong QT, Shih LY, Jones LC, Desmond JC, Kawamata N, et al. Identification of marker genes including RUNX3 (AML2) that discriminate between different myeloproliferative neoplasms and normal individuals. Leukemia. 2008;22:1773–8. https://doi.org/10.1038/leu.2008.41 .
doi: 10.1038/leu.2008.41
pubmed: 18323800
Muggeo S, Crisafulli L, Uva P, Fontana E, Ubezio M, Morenghi E, et al. PBX1-directed stem cell transcriptional program drives tumor progression in myeloproliferative neoplasm. Stem Cell Reports. 2021;16:2607–16. https://doi.org/10.1016/j.stemcr.2021.09.016 .
doi: 10.1016/j.stemcr.2021.09.016
pubmed: 34678207
pmcid: 8581051
Hasselbalch HC, Thomassen M, Riley CH, Kjær L, Larsen TS, Jensen MK, et al. Whole blood transcriptional profiling reveals deregulation of oxidative and antioxidative defence genes in myelofibrosis and related neoplasms. Potential implications of downregulation of Nrf2 for genomic instability and disease progression. PLoS ONE. 2014;9:e112786. https://doi.org/10.1371/journal.pone.0112786 .
doi: 10.1371/journal.pone.0112786
pubmed: 25397683
pmcid: 4232509
Palma-Barqueros V, Bohdan N, Revilla N, Vicente V, Bastida JM, Rivera J. PTGS1 gene variations associated with bleeding and platelet dysfunction. Platelets. 2021;32:710–6. https://doi.org/10.1080/09537104.2020.1782370 .
doi: 10.1080/09537104.2020.1782370
pubmed: 32584621
Camaschella C. BMP6 orchestrates iron metabolism. Nat Genet. 2009;41:386–8. https://doi.org/10.1038/ng0409-386 .
doi: 10.1038/ng0409-386
pubmed: 19338078
Bock O, Höftmann J, Theophile K, Hussein K, Wiese B, Schlué J, et al. Bone morphogenetic proteins are overexpressed in the bone marrow of primary myelofibrosis and are apparently induced by fibrogenic cytokines. Am J Pathol. 2008;172:951–60. https://doi.org/10.2353/ajpath.2008.071030 .
doi: 10.2353/ajpath.2008.071030
pubmed: 18349123
pmcid: 2276425
Topić I, Ikić M, Ivčević S, Kovačić N, Marušić A, Kušec R, et al. Bone morphogenetic proteins regulate differentiation of human promyelocytic leukemia cells. Leuk Res. 2013;37:705–12. https://doi.org/10.1016/j.leukres.2013.03.002 .
doi: 10.1016/j.leukres.2013.03.002
pubmed: 23528261
Taniguchi A, Nemoto Y, Yokoyama A, Kotani N, Imai S, Shuin T, et al. Promoter methylation of the bone morphogenetic protein-6 gene in association with adult T-cell leukemia. Int J Cancer. 2008;123:1824–31. https://doi.org/10.1002/ijc.23749 .
doi: 10.1002/ijc.23749
pubmed: 18688853
Hasselbalch HC, Skov V, Larsen TS, Thomassen M, Riley CH, Jensen MK, et al. High expression of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 6 and 8 in primary myelofibrosis. Leuk Res. 2011;35:1330–4. https://doi.org/10.1016/j.leukres.2011.03.013 .
doi: 10.1016/j.leukres.2011.03.013
pubmed: 21470677
Tillmann S, Olschok K, Schröder SK, Bütow M, Baumeister J, Kalmer M, et al. The unfolded protein response is a major driver of LCN2 expression in BCR-ABL- and JAK2V617F-positive MPN. Cancers. 2021;13:4210. https://doi.org/10.3390/cancers13164210 .
doi: 10.3390/cancers13164210
pubmed: 34439364
pmcid: 8391615
Lu M, Xia L, Liu YC, Hochman T, Bizzari L, Aruch D, et al. Lipocalin produced by myelofibrosis cells affects the fate of both hematopoietic and marrow microenvironmental cells. Blood. 2015;126:972–82. https://doi.org/10.1182/blood-2014-12-618595 .
doi: 10.1182/blood-2014-12-618595
pubmed: 26022238
pmcid: 4543230
Kagoya Y, Yoshimi A, Tsuruta-Kishino T, Arai S, Satoh T, Akira S, et al. JAK2V617F + myeloproliferative neoplasm clones evoke paracrine DNA damage to adjacent normal cells through secretion of lipocalin-2. Blood. 2014;124:2996–3006. https://doi.org/10.1182/blood-2014-04-570572 .
doi: 10.1182/blood-2014-04-570572
pubmed: 25217696
Zhong Y, Johnson AJ, Byrd JC, Dubovsky JA. Targeting Interleukin-2-Inducible T-cell kinase (ITK) in T-Cell related Diseases. Postdoc J. 2014;2:1–11. https://doi.org/10.14304/surya.jpr.v2n6.1 .
doi: 10.14304/surya.jpr.v2n6.1
pubmed: 27917390
pmcid: 5134889
Legler K, Rosprim R, Karius T, Eylmann K, Rossberg M, Wirtz RM, et al. Reduced mannosidase MAN1A1 expression leads to aberrant N-glycosylation and impaired survival in breast cancer. Br J Cancer. 2018;118:847–56. https://doi.org/10.1038/bjc.2017.472 .
doi: 10.1038/bjc.2017.472
pubmed: 29381688
pmcid: 5877434
Spivak JL, Considine M, Williams DM, Talbot CC Jr, Rogers O, Moliterno AR, et al. Two clinical phenotypes in polycythemia vera. N Engl J Med. 2014;371:808–17. https://doi.org/10.1056/NEJMoa1403141 .
doi: 10.1056/NEJMoa1403141
pubmed: 25162887
pmcid: 4211877
Wang JC, Kundra A, Andrei M, Baptiste S, Chen C, Wong C, et al. Myeloid-derived suppressor cells in patients with myeloproliferative neoplasm. Leuk Res. 2016;43:39–43. https://doi.org/10.1016/j.leukres.2016.02.004 .
doi: 10.1016/j.leukres.2016.02.004
pubmed: 26943702
Niapour M, Farr C, Minden M, Berger SA. Elevated calpain activity in acute myelogenous leukemia correlates with decreased calpastatin expression. Blood Cancer J. 2012;2:e51. https://doi.org/10.1038/bcj.2011.50 .
doi: 10.1038/bcj.2011.50
pubmed: 22829235
pmcid: 3270254
Passamonti F, Pietra D, Malabarba L, Rumi E, Della Porta MG, Malcovati L, et al. Clinical significance of neutrophil CD177 mRNA expression in Ph-negative chronic myeloproliferative disorders. Br J Haematol. 2004;126:650–6. https://doi.org/10.1111/j.1365-2141.2004.05098.x .
doi: 10.1111/j.1365-2141.2004.05098.x
pubmed: 15327515
Inoue D, Kitaura J, Togami K, Nishimura K, Enomoto Y, Uchida T, et al. Myelodysplastic syndromes are induced by histone methylation–altering ASXL1 mutations. J Clin Invest. 2013;123:4627–40. https://doi.org/10.1172/JCI70739 .
doi: 10.1172/JCI70739
pubmed: 24216483
pmcid: 3809801
Naudin C, Chevalier C, Roche S. The role of small adaptor proteins in the control of oncogenic signaling driven by tyrosine kinases in human cancer. Oncotarget. 2016;7:11033–55. https://doi.org/10.18632/oncotarget.6929 .
doi: 10.18632/oncotarget.6929
pubmed: 26788993
pmcid: 4905456
De Braekeleer E, Meyer C, Douet-Guilbert N, Basinko A, Le Bris MJ, Morel F, et al. Identification of MLL partner genes in 27 patients with acute leukemia from a single cytogenetic laboratory. Mol Oncol. 2011;5:555–63. https://doi.org/10.1016/j.molonc.2011.08.003 .
doi: 10.1016/j.molonc.2011.08.003
pubmed: 21900057
pmcid: 5528326
Hasselbalch HC, Skov V, Stauffer Larsen T, Thomassen M, Hasselbalch Riley C, Jensen MK, et al. Transcriptional profiling of whole blood identifies a unique 5-gene signature for myelofibrosis and imminent myelofibrosis transformation. PLoS ONE. 2014;9:e85567. https://doi.org/10.1371/journal.pone.0085567 .
doi: 10.1371/journal.pone.0085567
pubmed: 24454890
pmcid: 3890316
Suknuntha K, Ishii Y, Hu K, Brayan M, Yang DT, Swanson S, et al. Induced pluripotent stem cell model of chronic myeloid leukemia revealed Olfactomedin 4 as a novel survival factor for primitive leukemia cells. Blood. 2014;124:397. https://doi.org/10.1182/blood.V124.21.397.397 .
doi: 10.1182/blood.V124.21.397.397
Franzini A, Pomicter AD, Yan D, Khorashad JS, Tantravahi SK, Than H, et al. The transcriptome of CMML monocytes is highly inflammatory and reflects leukemia-specific and age-related alterations. Blood Adv. 2019;3:2949–61. https://doi.org/10.1182/bloodadvances.2019000585 .
doi: 10.1182/bloodadvances.2019000585
pubmed: 31648319
pmcid: 6849944
Guy A, Gourdou-Latyszenok V, Le Lay N, Peghaire C, Kilani B, Dias JV, et al. Vascular endothelial cell expression of JAK2
doi: 10.3324/haematol.2018.195321
pubmed: 30171023
pmcid: 6312008
Gangaraju R, Song J, Kim SJ, Tashi T, Reeves BN, Sundar KM, et al. Thrombotic, inflammatory, and HIF-regulated genes and thrombosis risk in polycythemia vera and essential thrombocythemia. Blood Adv. 2020;4:1115–30. https://doi.org/10.1182/bloodadvances.2019001379 .
doi: 10.1182/bloodadvances.2019001379
pubmed: 32203583
pmcid: 7094018
Mondet J, Hussein K, Mossuz P. Circulating cytokine levels as markers of inflammation in Philadelphia negative myeloproliferative neoplasms: diagnostic and prognostic interest. Mediators Inflamm. 2015;670580. https://doi.org/10.1155/2015/670580 .
Araki M, Yang Y, Masubuchi N, Hironaka Y, Takei H, Morishita S, et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood. 2016;127:1307–16. https://doi.org/10.1182/blood-2015-09-671172 .
doi: 10.1182/blood-2015-09-671172
pubmed: 26817954
Chachoua I, Pecquet C, El-Khoury M, Nivarthi H, Albu RI, Marty C, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127:1325–35. https://doi.org/10.1182/blood-2015-11-681932 .
doi: 10.1182/blood-2015-11-681932
pubmed: 26668133
Elf S, Abdelfattah NS, Chen E, Perales-Patón J, Rosen EA, Ko A, et al. Mutant calreticulin requires both its mutant C-terminus and the thrombopoietin receptor for oncogenic transformation. Cancer Discov. 2016;6:368–81. https://doi.org/10.1158/2159-8290 .
doi: 10.1158/2159-8290
pubmed: 26951227
pmcid: 4851866
Jutzi JS, Marneth AE, Ciboddo M, Guerra-Moreno A, Jiménez-Santos MJ, Kosmidou A, et al. Whole-genome CRISPR screening identifies N-glycosylation as a genetic and therapeutic vulnerability in CALR-mutant MPN. Blood. 2022;140:1291–304. https://doi.org/10.1182/blood.2022015629 .
doi: 10.1182/blood.2022015629
pubmed: 35763665
pmcid: 9479036