Phase Quantification of Heterogeneous Surfaces Using DFT-Simulated Valence Band Photoemission Spectra.

DFT TiO2 XPS phase quantification heterogeneous surfaces photocatalysis polymorphs surface mapping valence band

Journal

ACS applied materials & interfaces
ISSN: 1944-8252
Titre abrégé: ACS Appl Mater Interfaces
Pays: United States
ID NLM: 101504991

Informations de publication

Date de publication:
23 Aug 2023
Historique:
medline: 8 8 2023
pubmed: 8 8 2023
entrez: 8 8 2023
Statut: ppublish

Résumé

Quantifying the crystallographic phases present at a surface is an important challenge in fields such as functional materials and surface science. X-ray photoelectron spectroscopy (XPS) is routinely employed in surface characterization to identify and quantify chemical species through core line analysis. Valence band (VB) spectra contain characteristic but complex features that provide information on the electronic density of states (DoS) and thus can be understood theoretically using density functional theory (DFT). Here, we present a method of fitting experimental photoemission spectra with DFT models for quantitative analysis of heterogeneous systems, specifically mapping the anatase to rutile ratio across the surface of mixed-phase TiO

Identifiants

pubmed: 37552034
doi: 10.1021/acsami.3c06638
pmc: PMC10450682
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

39956-39965

Références

Angew Chem Int Ed Engl. 2011 Oct 17;50(43):10174-7
pubmed: 21692154
Chem Sci. 2021 Oct 5;12(44):14686-14699
pubmed: 34820084
Angew Chem Int Ed Engl. 2022 Aug 1;61(31):e202207013
pubmed: 35612297
Phys Rev B Condens Matter. 1991 May 15;43(14):12004-12011
pubmed: 9996977
J Res Natl Bur Stand A Phys Chem. 1970 Jul-Aug;74A(4):543-558
pubmed: 32523208
Chem Soc Rev. 2015 May 21;44(10):2849-64
pubmed: 25773270
Phys Chem Chem Phys. 2016 Sep 21;18(35):24722-8
pubmed: 27546382
Phys Rev Lett. 1991 Jul 1;67(1):116-119
pubmed: 10044066
ACS Mater Lett. 2020 Dec 7;2(12):1644-1652
pubmed: 33313512
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
pubmed: 10062328
Chem Commun (Camb). 2005 Jun 7;(21):2721-3
pubmed: 15917932
Phys Rev Lett. 2014 Mar 21;112(11):117601
pubmed: 24702416
Phys Rev Lett. 2008 Apr 4;100(13):136406
pubmed: 18517979
J Phys Chem C Nanomater Interfaces. 2020 Oct 15;124(41):22416-22425
pubmed: 33193938
Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186
pubmed: 9984901
Phys Rev Lett. 2002 Aug 12;89(7):077401
pubmed: 12190555
Phys Rev Lett. 2003 Oct 24;91(17):176401
pubmed: 14611363
J Phys Chem Lett. 2016 Jul 21;7(14):2722-9
pubmed: 27364125

Auteurs

Roxy Lee (R)

Department of Chemistry, UCL (University College London), 20 Gordon Street, London WC1H 0AJ, U.K.

Raul Quesada-Cabrera (R)

Department of Chemistry, UCL (University College London), 20 Gordon Street, London WC1H 0AJ, U.K.
Department of Chemistry, Institute of Environmental Studies and Natural Resources (i-UNAT, FEAM), Universidad de Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, Las Palmas 35017, Spain.

Joe Willis (J)

Department of Chemistry, UCL (University College London), 20 Gordon Street, London WC1H 0AJ, U.K.
Thomas Young Centre, UCL (University College London), Gower Street, London WC1E 6BT, U.K.
Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.

Asif Iqbal (A)

Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada.

Ivan P Parkin (IP)

Department of Chemistry, UCL (University College London), 20 Gordon Street, London WC1H 0AJ, U.K.

David O Scanlon (DO)

Department of Chemistry, UCL (University College London), 20 Gordon Street, London WC1H 0AJ, U.K.
Thomas Young Centre, UCL (University College London), Gower Street, London WC1E 6BT, U.K.

Robert G Palgrave (RG)

Department of Chemistry, UCL (University College London), 20 Gordon Street, London WC1H 0AJ, U.K.

Classifications MeSH