Multi-elemental consumer-driven nutrient cycling when predators feed on different prey.
Elemental assimilation
Predator–prey interactions
Seasonality
Trace elements
Wolf spiders
Journal
Oecologia
ISSN: 1432-1939
Titre abrégé: Oecologia
Pays: Germany
ID NLM: 0150372
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
received:
15
03
2023
accepted:
31
07
2023
medline:
4
9
2023
pubmed:
8
8
2023
entrez:
8
8
2023
Statut:
ppublish
Résumé
Predators play a fundamental role in cycling nutrients through ecosystems, by altering the amount and compositions of waste products and uneaten prey parts available to decomposers. Different prey can vary in their elemental content and the deposition of elements in predator waste can vary depending on which elements are preferentially retained versus eliminated as waste products. We tested how feeding on different prey (caterpillars, cockroaches, crickets, and flies) affected the concentrations of 23 elements in excreta deposited by wolf spider across 2 seasons (spring versus fall). Spider excreta had lower concentrations of carbon and higher concentrations of many other elements (Al, B, Ba, K, Li, P, S, Si, and Sr) compared to prey remains and whole prey carcasses. In addition, elemental concentrations in unconsumed whole prey carcasses and prey remains varied between prey species, while spider excreta had the lowest variation among prey species. Finally, the concentrations of elements deposited differed between seasons, with wolf spiders excreting greater concentrations of Fe, Mg, Mn, Mo, S, and V in the fall. However, in the spring, spiders excreted higher concentrations of Al, B, Ba, Ca, Cd, Cu, K, P, Na, Si, Sr, and Zn. These results highlight that prey identity and environmental variation can determine the role that predators play in regulating the cycling of many elements. A better understanding of these convoluted nutritional interactions is critical to disentangle specific consumer-driven effects on ecosystem function.
Identifiants
pubmed: 37552361
doi: 10.1007/s00442-023-05431-9
pii: 10.1007/s00442-023-05431-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
729-742Subventions
Organisme : United States - Israel Binational Science Foundation
ID : 2017338
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London
doi: 10.1007/978-94-009-4109-0
Arrigo KR (2005) Marine microorganisms and global nutrient cycles. Nature 437:349–355
pubmed: 16163345
doi: 10.1038/nature04159
Atkinson CL, Capps KA, Rugenski AT, Vanni MJ (2017) Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems. Biol Rev 92:2003–2023
pubmed: 28008706
doi: 10.1111/brv.12318
Barnes LC (2010) Contribution of spider resource use to ecosystem nutrient flow and function (unpublished doctoral thesis). Oklahoma State University
Barnes LC, McCue DM, Hawlena D, Wilder MS (2019) Consequences of prey exoskeleton content for predator feeding and digestion: black widow predation on larval versus adult mealworm beetles. Oecologia 190:1–9
pubmed: 30478619
doi: 10.1007/s00442-018-4308-y
Barret K, Anderson BW, Wait AD, Grismer LL, Polis AG, Rose DM (2005) Marine subsidies alter the diet and abundance of insular and coastal lizard populations. Oikos 109:145–153
doi: 10.1111/j.0030-1299.2005.13728.x
Barron A, Wurzburger N, Bellenger J, Wright S, Kraepiel A, Hedin L (2008) Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat Geosci 2:42–45
doi: 10.1038/ngeo366
Bertram SM, Bowen M, Kyle M, Schade JD (2008) Extensive natural intraspecific variation in stoichiometric (C:N:P) composition in two terrestrial insect species. J Insect Sci 8:1. https://doi.org/10.1673/031.008.2601
doi: 10.1673/031.008.2601
pubmed: 20298114
Boyd P, Watson A, Law C, Abraham E, Trull T (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702
pubmed: 11048709
doi: 10.1038/35037500
Bump KJ, Peterson OR, Vucetich AJ (2009) Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90(11):3159–3167
pubmed: 19967871
doi: 10.1890/09-0292.1
Clay AN, Lehrter JR, Kaspari M (2017) Towards a geography of omnivore: Omnivores increase carnivory when sodium is limiting. J Anim Ecol 86:1523–1531
pubmed: 28892138
doi: 10.1111/1365-2656.12754
Elser JJ, Urabe J (1999) The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology 80(3):735–751
doi: 10.1890/0012-9658(1999)080[0735:TSOCDN]2.0.CO;2
Elser JJ, Kyle M, Learned J, McCrackin ML, Peace A, Steger L (2016) Life on the stoichiometric knife-edge: effects of high and low food C:P on growth, feeding, and respiration in three Daphnia species. Inland Waters 6(2):136–146
doi: 10.5268/IW-6.2.908
Fagan WF, Siemann E, Mitter C, Denno RF, Huberty AF, Woods HA, Elser JJ (2002) Nitrogen in insects: implications for trophic complexity and species diversification. Am Nat 160(6):784–802
pubmed: 18707465
doi: 10.1086/343879
Filipiak M (2016) Pollen stoichiometry may influence detrital terrestrial and aquatic food webs. Front Ecol Evol 4:138
doi: 10.3389/fevo.2016.00138
Filipiak M (2018) Nutrient dynamics in decomposing dead wood in the context of wood eater requirements: the ecological stoichiometry of saproxylophagous insects. In: Ulyshen M (ed) Saproxylic insects. Zoological monographs, vol 1. Springer, New York, pp 429–469
doi: 10.1007/978-3-319-75937-1_13
Filipiak M, Filipiak ZM (2022) Application of ionomics and ecological stoichiometry in conservation biology: nutrient demand and supply in a changing environment. Biol Conserv 272:109622
doi: 10.1016/j.biocon.2022.109622
Filipiak M, Weiner J (2017) Nutritional dynamics during the development of xylophagous beetles related to changes in the stoichiometry of 11 elements. Physiol Entomol 42:73–84
doi: 10.1111/phen.12168
Filipiak M, Woyciechowski M, Czarnoleski M (2021) Stoichiometric niche, nutrient partitioning and resource allocation in solitary bee are sex-specific and phosphorous is allocated mainly to the cocoon. Sci Rep 11:652
pubmed: 33436811
pmcid: 7804283
doi: 10.1038/s41598-020-79647-7
Foelix RF (1996) Biology of spiders, 2nd edn. Oxford University Press, Oxford, p 330
Gallant J, Hochberg R (2017) Elemental characterization of the exoskeleton in whipscorpions Mastigoproctus giganteus and Typopeltis dalyi (Arachnida: Thelyphonida). Invertebr Biol 136(3):345–359
doi: 10.1111/ivb.12187
González A, Barnes LC, Wilder MS, Long MJ (2020) Differences in macronutrient content of common aquatic macroinvertebrates available as prey for young-of-the-year Scaphirhynchus sturgeons in the lower Missouri river. J Freshw Ecol 35(1):191–202
doi: 10.1080/02705060.2020.1767705
Greenacre M (2021) Compositional data analysis. Annu Rev Stat Appl 8:271–299
doi: 10.1146/annurev-statistics-042720-124436
Hawlena D, Strickland SM, Bradford AM, Schmitz JO (2012) Fear of predation slows plant-litter decomposition. Science 336(6087):1434–1438
pubmed: 22700928
doi: 10.1126/science.1220097
Hilderbrand VG, Hanley AT, Robbins TC, Schwartz CC (1999) Role of brown bears (Ursus arctos) in the flow of marine nitrogen into a terrestrial ecosystem. Oecologia 121:546–550
pubmed: 28308364
doi: 10.1007/s004420050961
Hodkinson DI, Coulson JS, Harrison J, Webb RN (2001) What a wonderful web they weave: spiders, nutrient capture and early ecosystem development in the high arctic—some counter-intuitive ideas on community assembly. Oikos 95(2):349–352
doi: 10.1034/j.1600-0706.2001.950217.x
Joern A, Provin T, Behmer ST (2012) Not just the usual suspects: insect herbivore populations and communities are associated with multiple plant nutrients. Ecology 93:1002–1015
pubmed: 22764487
doi: 10.1890/11-1142.1
Kaspari M (2021) The invisible hand of the periodic table: how micronutrients shape ecology. Annu Rev Ecol Evol Syst 52:199–219
doi: 10.1146/annurev-ecolsys-012021-090118
Lease MH, Wolf OB (2010) Exoskeletal chitin scales isometrically with body size in terrestrial insects. J Morphol 271:759–768
pubmed: 20235123
Ludwig L, Barbour MA, Guevara J, Avilés L, González AL (2018) Caught in the web: spider web architecture affects prey specialization and spider-prey stoichiometric relationships. Ecol Evol 8(13):6449–6462
pubmed: 30038747
pmcid: 6053566
doi: 10.1002/ece3.4028
Nyffeler M, Birkhofer K (2017) An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci Nat 104:30
doi: 10.1007/s00114-017-1440-1
Prater C, Bumpers PM, Demi LM, Rosemond AD, Jeyasingh PD (2020) Differential responses of macroinvertebrate ionomes across experimental N:P gradients in detritus-based headwater streams. Oecologia 193:981–993
pubmed: 32740731
pmcid: 7458898
doi: 10.1007/s00442-020-04720-x
Reeves TJ, Fuhlendorf DS, Davis AC, Wilder MS (2021) Arthropod prey vary among orders in their nutrient and exoskeleton content. Ecol Evol 11(24):17774–17785
pubmed: 35003638
pmcid: 8717265
doi: 10.1002/ece3.8280
Rehm P, Christian P, Borner J, Markl J, Burmester T (2012) The diversity and evolution of chelicerate hemocyanins. BMC Evol Biol 12:19
pubmed: 22333134
pmcid: 3306762
doi: 10.1186/1471-2148-12-19
Romero GQ, Mazzafera P, Vasconcellos-Neto J, Trivelin PC (2006) Bromeliad- living spiders improve host plant nutrition and growth. Ecology 87(4):803–808
pubmed: 16676522
doi: 10.1890/0012-9658(2006)87[803:BSIHPN]2.0.CO;2
Rumpold BA, Schlüter OK (2013) Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res 57:802–823
pubmed: 23471778
doi: 10.1002/mnfr.201200735
Sabree LZ, Kambhampati S, Moran AN (2009) Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. PNAS 106:19521–19526
pubmed: 19880743
pmcid: 2780778
doi: 10.1073/pnas.0907504106
Schmitz OJ, Hawlena D, Trussell GC (2010) Predator control of ecosystem nutrient dynamics. Ecol Lett 13(10):1199–1209
pubmed: 20602626
doi: 10.1111/j.1461-0248.2010.01511.x
Schmitz OJ, Raymond PA, Estes JA, Kurz WA, Holtgrieve GW, Ritchie ME, Schindler DE, Spivak AC, Wilson RW, Bradford MA, Christensen V, Deegan L, Smetacek V, Vanni MJ, Wilmers CC (2014) Animating the carbon cycle. Ecosystems 17:344–359
doi: 10.1007/s10021-013-9715-7
Schmitz OJ, Wilmers CC, Leroux SJ, Doughty CE, Atwood TB, Galetti M, Davies AB, Goetz SJ (2018) Animals and the zoogeochemistry of the carbon cycle. Science 362:6419
doi: 10.1126/science.aar3213
Seastedt RT, Tate MC (1981) Decomposition rates and nutrient contents of arthropod remains in forest litter. Ecology 62(1):13–19
doi: 10.2307/1936662
Silliman RB, Bertness DM (2002) A trophic cascade regulates salt marsh primary production. PNAS 99(16):10500–10505
pubmed: 12149475
pmcid: 124954
doi: 10.1073/pnas.162366599
Sobcyzk L, Filipiak M, Czarnoleski M (2020) Sexual dimorphism in the multielemental stoichiometric phenotypes and stoichiometric niches of spiders. InSects 11(8):484
doi: 10.3390/insects11080484
Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton
Trubl P, Johnson JC (2019) Ecological stoichiometry of the black widow spider and its prey from desert, urban and laboratory populations. J Arid Environ 163:18–25
doi: 10.1016/j.jaridenv.2018.12.002
Varelas V, Langton M (2017) Forest biomass waste as a potential innovative source for rearing edible insects for food and feed—a review. Innov Food Sci Emerg Technol 41:193–205
doi: 10.1016/j.ifset.2017.03.007
Walter A, Bechsgaard J, Scavenius C, Dyrlund ST, Sanggaard WK, Enghild JJ, Bilde T (2017) Charcterisation of protein families in spider digestive fluids and their role in extra-oral digestion. BMC Genom 18:600
doi: 10.1186/s12864-017-3987-9
Welti EAR, Kaspari M (2021) Sodium addition increases leaf herbivory and fungal damage across four grasslands. Funct Ecol 35(6):1212–1221
doi: 10.1111/1365-2435.13796
Welti EAR, Sanders NJ, Beurs KM, Kaspari M (2019) A distributed experiment demonstrates widespread sodium limitation in grassland food webs. Ecology 100(3):e02600
pubmed: 30726560
doi: 10.1002/ecy.2600
Wilder SM, Schneider JM (2017) Micronutrient consumption by female Argiope bruennichi affects offspring survival. J Insect Physiol 100:128–132
pubmed: 28614727
doi: 10.1016/j.jinsphys.2017.06.007
Wilder MS, Norris M, Lee WR, Raubenheimer D, Simpson JS (2013) Arthropod food webs become increasingly lipid-limited at higher trophic levels. Ecol Lett 16:895–902
pubmed: 23701046
doi: 10.1111/ele.12116
Woods AH, Fagan FW, Elser JJ, Harrison FJ (2004) Allometric and phylogenetic variation in insect phosphorus content. Funct Ecol 18:103–109
doi: 10.1111/j.1365-2435.2004.00823.x
Zhang B, Chen H, Deng M, Li J, Angélica GL, Wang S (2022) High dimensionality of stoichiometric niches in soil fauna. Ecology 103(9):e3741
pubmed: 35524916
doi: 10.1002/ecy.3741
Zhang B, Chen H, Deng M, Li X, Chen T, Liu L, Scheu S, Wang S (2023) Multidimensional stoichiometric mismatch explains differences in detritivore biomass across three forest types. J Anim Ecol 92:454–465
pubmed: 36477808
doi: 10.1111/1365-2656.13859
Zhou L, Declerck SAJ (2019) Herbivore consumers face different challenges along opposite sides of the stoichiometric knife-edge. Ecol Lett 22:2018–2027
pubmed: 31512359
pmcid: 6900088
doi: 10.1111/ele.13386