PTPN11 variant may be a prognostic indicator of IDH-wildtype glioblastoma in a comprehensive genomic profiling cohort.
C-CAT
Comprehensive genomic profiling
Glioblastoma
PTPN11
SHP2
Journal
Journal of neuro-oncology
ISSN: 1573-7373
Titre abrégé: J Neurooncol
Pays: United States
ID NLM: 8309335
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
received:
10
07
2023
accepted:
27
07
2023
medline:
29
8
2023
pubmed:
8
8
2023
entrez:
8
8
2023
Statut:
ppublish
Résumé
Glioblastoma (GBM) is the most common type of primary malignant brain tumor and has a poor prognosis. Identifying novel targets and stratification strategies is urgently needed to improve patient survival. The present study aimed to identify clinically relevant genomic alterations in IDH-wildtype GBM using data from comprehensive genomic profiling (CGP) assays performed nationwide in Japan. The CGP assay results of 392 IDH-wildtype GBM cases performed between October 2019 and February 2023 obtained from the Center for Cancer Genomics and Advanced Therapeutics were retrospectively analyzed. The median patient age was 52.5 years, and 207 patients (53%) were male. In the 286 patients for whom survival information was available, a protein-tyrosine phosphatase non-receptor type 11 (PTPN11) variant detected in 20 patients (6.8%) was extracted as the gene associated with significantly shorter overall survival (p = 0.002). Multivariate analysis demonstrated that the PTPN11 variant and poor performance status were independent prognostic indicators. In contrast, no prognostic impact was observed in the cohort in The Cancer Genome Atlas data. The discrepancy in the prognostic impact of the PTPN11 variant from these two pools might have resulted from differences in the biases affecting the survival of patients who underwent a CGP assay, including left-truncation and right-censored bias. However, survival simulation done to adjust for these biases showed that the prognostic impact of the PTPN11 variant was also significant. The PTPN11 variant was a negative prognostic indicator of IDH-wildtype GBM in the patient cohort with the CGP assay.
Identifiants
pubmed: 37552362
doi: 10.1007/s11060-023-04411-6
pii: 10.1007/s11060-023-04411-6
doi:
Substances chimiques
Phosphoric Monoester Hydrolases
EC 3.1.3.2
Isocitrate Dehydrogenase
EC 1.1.1.41
PTPN11 protein, human
EC 3.1.3.48
Protein Tyrosine Phosphatase, Non-Receptor Type 11
EC 3.1.3.48
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
221-229Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:829–848. https://doi.org/10.1007/s00401-015-1432-1
doi: 10.1007/s00401-015-1432-1
pubmed: 25943888
Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiation Oncology G, National Cancer Institute of Canada Clinical Trials G (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466. https://doi.org/10.1016/S1470-2045(09)70025-7
doi: 10.1016/S1470-2045(09)70025-7
pubmed: 19269895
Yoshii Y, Okazaki S, Takeda M (2021) Current status of next-generation sequencing-based cancer genome profiling tests in japan and prospects for liquid biopsy. Life. https://doi.org/10.3390/life11080796
doi: 10.3390/life11080796
pubmed: 34440540
pmcid: 8399872
Sunami K, Ichikawa H, Kubo T, Kato M, Fujiwara Y, Shimomura A, Koyama T, Kakishima H, Kitami M, Matsushita H, Furukawa E, Narushima D, Nagai M, Taniguchi H, Motoi N, Sekine S, Maeshima A, Mori T, Watanabe R, Yoshida M, Yoshida A, Yoshida H, Satomi K, Sukeda A, Hashimoto T, Shimizu T, Iwasa S, Yonemori K, Kato K, Morizane C, Ogawa C, Tanabe N, Sugano K, Hiraoka N, Tamura K, Yoshida T, Fujiwara Y, Ochiai A, Yamamoto N, Kohno T (2019) Feasibility and utility of a panel testing for 114 cancer-associated genes in a clinical setting: a hospital-based study. Cancer Sci 110:1480–1490. https://doi.org/10.1111/cas.13969
doi: 10.1111/cas.13969
pubmed: 30742731
pmcid: 6447843
Mukai Y, Ueno H (2021) Establishment and implementation of cancer genomic medicine in Japan. Cancer Sci 112:970–977. https://doi.org/10.1111/cas.14754
doi: 10.1111/cas.14754
pubmed: 33289217
pmcid: 7935799
Brown S, Lavery JA, Shen R, Martin AS, Kehl KL, Sweeney SM, Lepisto EM, Rizvi H, McCarthy CG, Schultz N, Warner JL, Park BH, Bedard PL, Riely GJ, Schrag D, Panageas KS, Consortium APG (2022) Implications of selection bias due to delayed study entry in clinical genomic studies. JAMA Oncol 8:287–291. https://doi.org/10.1001/jamaoncol.2021.5153
doi: 10.1001/jamaoncol.2021.5153
pubmed: 34734967
pmcid: 9190030
Tamura T, Ikegami M, Kanemasa Y, Yomota M, Furusawa A, Otani R, Saita C, Yonese I, Onishi T, Kobayashi H, Akiyama T, Shimoyama T, Aruga T, Yamaguchi T (2023) Selection bias due to delayed comprehensive genomic profiling in Japan. Cancer Sci 114:1015–1025. https://doi.org/10.1111/cas.15651
doi: 10.1111/cas.15651
pubmed: 36369895
Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K, Maris JM, Richardson A, Bardelli A, Sugarbaker DJ, Richards WG, Du J, Girard L, Minna JD, Loh ML, Fisher DE, Velculescu VE, Vogelstein B, Meyerson M, Sellers WR, Neel BG (2004) Activating mutations of the Noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res 64:8816–8820. https://doi.org/10.1158/0008-5472.CAN-04-1923
doi: 10.1158/0008-5472.CAN-04-1923
pubmed: 15604238
Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, Jeffery S, Kalidas K, Patton MA, Kucherlapati RS, Gelb BD (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29:465–468. https://doi.org/10.1038/ng772
doi: 10.1038/ng772
pubmed: 11704759
Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE (1998) Crystal structure of the tyrosine phosphatase SHP-2. Cell 92:441–450. https://doi.org/10.1016/s0092-8674(00)80938-1
doi: 10.1016/s0092-8674(00)80938-1
pubmed: 9491886
Gelb BD, Tartaglia M (2006) Noonan syndrome and related disorders: dysregulated RAS-mitogen activated protein kinase signal transduction. Hum Mol Genet. https://doi.org/10.1093/hmg/ddl197
doi: 10.1093/hmg/ddl197
pubmed: 16987887
Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y, Raught B, Zhang ZY, Zadeh G, Ohh M (2015) Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun 6:8859. https://doi.org/10.1038/ncomms9859
doi: 10.1038/ncomms9859
pubmed: 26617336
Sang Y, Hou Y, Cheng R, Zheng L, Alvarez AA, Hu B, Cheng SY, Zhang W, Li Y, Feng H (2019) Targeting PDGFRalpha-activated glioblastoma through specific inhibition of SHP-2-mediated signaling. Neuro Oncol 21:1423–1435. https://doi.org/10.1093/neuonc/noz107
doi: 10.1093/neuonc/noz107
pubmed: 31232447
pmcid: 6827835
Roccograndi L, Binder ZA, Zhang L, Aceto N, Zhang Z, Bentires-Alj M, Nakano I, Dahmane N, O’Rourke DM (2017) SHP2 regulates proliferation and tumorigenicity of glioma stem cells. J Neurooncol 135:487–496. https://doi.org/10.1007/s11060-017-2610-x
doi: 10.1007/s11060-017-2610-x
pubmed: 28852935
Kanumuri R, Kumar Pasupuleti S, Burns SS, Ramdas B, Kapur R (2022) Targeting SHP2 phosphatase in hematological malignancies. Expert Opin Ther Targets 26:319–332. https://doi.org/10.1080/14728222.2022.2066518
doi: 10.1080/14728222.2022.2066518
pubmed: 35503226
pmcid: 9239432
Hill KS, Roberts ER, Wang X, Marin E, Park TD, Son S, Ren Y, Fang B, Yoder S, Kim S, Wan L, Sarnaik AA, Koomen JM, Messina JL, Teer JK, Kim Y, Wu J, Chalfant CE, Kim M (2019) PTPN11 plays oncogenic roles and is a therapeutic target for BRAF wild-type melanomas. Mol Cancer Res 17:583–593. https://doi.org/10.1158/1541-7786.MCR-18-0777
doi: 10.1158/1541-7786.MCR-18-0777
pubmed: 30355677
Kehl KL, Schrag D, Hassett MJ, Uno H (2020) Assessment of Temporal Selection Bias in Genomic Testing in a Cohort of Patients With Cancer. JAMA Netw Open 3:e206976. https://doi.org/10.1001/jamanetworkopen.2020.6976
doi: 10.1001/jamanetworkopen.2020.6976
pubmed: 32511717
pmcid: 7280950
Schisterman EF, Cole SR, Ye A, Platt RW (2013) Accuracy loss due to selection bias in cohort studies with left truncation. Paediatr Perinat Epidemiol 27:491–502. https://doi.org/10.1111/ppe.12073
doi: 10.1111/ppe.12073
pubmed: 23930785
pmcid: 6151356
Heath EI, Lynce F, Xiu J, Ellerbrock A, Reddy SK, Obeid E, Liu SV, Bollig-Fischer A, Separovic D, Vanderwalde A (2018) Racial disparities in the molecular landscape of cancer. Anticancer Res 38:2235–2240. https://doi.org/10.21873/anticanres.12466
doi: 10.21873/anticanres.12466
pubmed: 29599344
pmcid: 6123828