PTPN11 variant may be a prognostic indicator of IDH-wildtype glioblastoma in a comprehensive genomic profiling cohort.


Journal

Journal of neuro-oncology
ISSN: 1573-7373
Titre abrégé: J Neurooncol
Pays: United States
ID NLM: 8309335

Informations de publication

Date de publication:
Aug 2023
Historique:
received: 10 07 2023
accepted: 27 07 2023
medline: 29 8 2023
pubmed: 8 8 2023
entrez: 8 8 2023
Statut: ppublish

Résumé

Glioblastoma (GBM) is the most common type of primary malignant brain tumor and has a poor prognosis. Identifying novel targets and stratification strategies is urgently needed to improve patient survival. The present study aimed to identify clinically relevant genomic alterations in IDH-wildtype GBM using data from comprehensive genomic profiling (CGP) assays performed nationwide in Japan. The CGP assay results of 392 IDH-wildtype GBM cases performed between October 2019 and February 2023 obtained from the Center for Cancer Genomics and Advanced Therapeutics were retrospectively analyzed. The median patient age was 52.5 years, and 207 patients (53%) were male. In the 286 patients for whom survival information was available, a protein-tyrosine phosphatase non-receptor type 11 (PTPN11) variant detected in 20 patients (6.8%) was extracted as the gene associated with significantly shorter overall survival (p = 0.002). Multivariate analysis demonstrated that the PTPN11 variant and poor performance status were independent prognostic indicators. In contrast, no prognostic impact was observed in the cohort in The Cancer Genome Atlas data. The discrepancy in the prognostic impact of the PTPN11 variant from these two pools might have resulted from differences in the biases affecting the survival of patients who underwent a CGP assay, including left-truncation and right-censored bias. However, survival simulation done to adjust for these biases showed that the prognostic impact of the PTPN11 variant was also significant. The PTPN11 variant was a negative prognostic indicator of IDH-wildtype GBM in the patient cohort with the CGP assay.

Identifiants

pubmed: 37552362
doi: 10.1007/s11060-023-04411-6
pii: 10.1007/s11060-023-04411-6
doi:

Substances chimiques

Phosphoric Monoester Hydrolases EC 3.1.3.2
Isocitrate Dehydrogenase EC 1.1.1.41
PTPN11 protein, human EC 3.1.3.48
Protein Tyrosine Phosphatase, Non-Receptor Type 11 EC 3.1.3.48

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

221-229

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:829–848. https://doi.org/10.1007/s00401-015-1432-1
doi: 10.1007/s00401-015-1432-1 pubmed: 25943888
Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiation Oncology G, National Cancer Institute of Canada Clinical Trials G (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466. https://doi.org/10.1016/S1470-2045(09)70025-7
doi: 10.1016/S1470-2045(09)70025-7 pubmed: 19269895
Yoshii Y, Okazaki S, Takeda M (2021) Current status of next-generation sequencing-based cancer genome profiling tests in japan and prospects for liquid biopsy. Life. https://doi.org/10.3390/life11080796
doi: 10.3390/life11080796 pubmed: 34440540 pmcid: 8399872
Sunami K, Ichikawa H, Kubo T, Kato M, Fujiwara Y, Shimomura A, Koyama T, Kakishima H, Kitami M, Matsushita H, Furukawa E, Narushima D, Nagai M, Taniguchi H, Motoi N, Sekine S, Maeshima A, Mori T, Watanabe R, Yoshida M, Yoshida A, Yoshida H, Satomi K, Sukeda A, Hashimoto T, Shimizu T, Iwasa S, Yonemori K, Kato K, Morizane C, Ogawa C, Tanabe N, Sugano K, Hiraoka N, Tamura K, Yoshida T, Fujiwara Y, Ochiai A, Yamamoto N, Kohno T (2019) Feasibility and utility of a panel testing for 114 cancer-associated genes in a clinical setting: a hospital-based study. Cancer Sci 110:1480–1490. https://doi.org/10.1111/cas.13969
doi: 10.1111/cas.13969 pubmed: 30742731 pmcid: 6447843
Mukai Y, Ueno H (2021) Establishment and implementation of cancer genomic medicine in Japan. Cancer Sci 112:970–977. https://doi.org/10.1111/cas.14754
doi: 10.1111/cas.14754 pubmed: 33289217 pmcid: 7935799
Brown S, Lavery JA, Shen R, Martin AS, Kehl KL, Sweeney SM, Lepisto EM, Rizvi H, McCarthy CG, Schultz N, Warner JL, Park BH, Bedard PL, Riely GJ, Schrag D, Panageas KS, Consortium APG (2022) Implications of selection bias due to delayed study entry in clinical genomic studies. JAMA Oncol 8:287–291. https://doi.org/10.1001/jamaoncol.2021.5153
doi: 10.1001/jamaoncol.2021.5153 pubmed: 34734967 pmcid: 9190030
Tamura T, Ikegami M, Kanemasa Y, Yomota M, Furusawa A, Otani R, Saita C, Yonese I, Onishi T, Kobayashi H, Akiyama T, Shimoyama T, Aruga T, Yamaguchi T (2023) Selection bias due to delayed comprehensive genomic profiling in Japan. Cancer Sci 114:1015–1025. https://doi.org/10.1111/cas.15651
doi: 10.1111/cas.15651 pubmed: 36369895
Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K, Maris JM, Richardson A, Bardelli A, Sugarbaker DJ, Richards WG, Du J, Girard L, Minna JD, Loh ML, Fisher DE, Velculescu VE, Vogelstein B, Meyerson M, Sellers WR, Neel BG (2004) Activating mutations of the Noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res 64:8816–8820. https://doi.org/10.1158/0008-5472.CAN-04-1923
doi: 10.1158/0008-5472.CAN-04-1923 pubmed: 15604238
Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, Jeffery S, Kalidas K, Patton MA, Kucherlapati RS, Gelb BD (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29:465–468. https://doi.org/10.1038/ng772
doi: 10.1038/ng772 pubmed: 11704759
Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE (1998) Crystal structure of the tyrosine phosphatase SHP-2. Cell 92:441–450. https://doi.org/10.1016/s0092-8674(00)80938-1
doi: 10.1016/s0092-8674(00)80938-1 pubmed: 9491886
Gelb BD, Tartaglia M (2006) Noonan syndrome and related disorders: dysregulated RAS-mitogen activated protein kinase signal transduction. Hum Mol Genet. https://doi.org/10.1093/hmg/ddl197
doi: 10.1093/hmg/ddl197 pubmed: 16987887
Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y, Raught B, Zhang ZY, Zadeh G, Ohh M (2015) Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun 6:8859. https://doi.org/10.1038/ncomms9859
doi: 10.1038/ncomms9859 pubmed: 26617336
Sang Y, Hou Y, Cheng R, Zheng L, Alvarez AA, Hu B, Cheng SY, Zhang W, Li Y, Feng H (2019) Targeting PDGFRalpha-activated glioblastoma through specific inhibition of SHP-2-mediated signaling. Neuro Oncol 21:1423–1435. https://doi.org/10.1093/neuonc/noz107
doi: 10.1093/neuonc/noz107 pubmed: 31232447 pmcid: 6827835
Roccograndi L, Binder ZA, Zhang L, Aceto N, Zhang Z, Bentires-Alj M, Nakano I, Dahmane N, O’Rourke DM (2017) SHP2 regulates proliferation and tumorigenicity of glioma stem cells. J Neurooncol 135:487–496. https://doi.org/10.1007/s11060-017-2610-x
doi: 10.1007/s11060-017-2610-x pubmed: 28852935
Kanumuri R, Kumar Pasupuleti S, Burns SS, Ramdas B, Kapur R (2022) Targeting SHP2 phosphatase in hematological malignancies. Expert Opin Ther Targets 26:319–332. https://doi.org/10.1080/14728222.2022.2066518
doi: 10.1080/14728222.2022.2066518 pubmed: 35503226 pmcid: 9239432
Hill KS, Roberts ER, Wang X, Marin E, Park TD, Son S, Ren Y, Fang B, Yoder S, Kim S, Wan L, Sarnaik AA, Koomen JM, Messina JL, Teer JK, Kim Y, Wu J, Chalfant CE, Kim M (2019) PTPN11 plays oncogenic roles and is a therapeutic target for BRAF wild-type melanomas. Mol Cancer Res 17:583–593. https://doi.org/10.1158/1541-7786.MCR-18-0777
doi: 10.1158/1541-7786.MCR-18-0777 pubmed: 30355677
Kehl KL, Schrag D, Hassett MJ, Uno H (2020) Assessment of Temporal Selection Bias in Genomic Testing in a Cohort of Patients With Cancer. JAMA Netw Open 3:e206976. https://doi.org/10.1001/jamanetworkopen.2020.6976
doi: 10.1001/jamanetworkopen.2020.6976 pubmed: 32511717 pmcid: 7280950
Schisterman EF, Cole SR, Ye A, Platt RW (2013) Accuracy loss due to selection bias in cohort studies with left truncation. Paediatr Perinat Epidemiol 27:491–502. https://doi.org/10.1111/ppe.12073
doi: 10.1111/ppe.12073 pubmed: 23930785 pmcid: 6151356
Heath EI, Lynce F, Xiu J, Ellerbrock A, Reddy SK, Obeid E, Liu SV, Bollig-Fischer A, Separovic D, Vanderwalde A (2018) Racial disparities in the molecular landscape of cancer. Anticancer Res 38:2235–2240. https://doi.org/10.21873/anticanres.12466
doi: 10.21873/anticanres.12466 pubmed: 29599344 pmcid: 6123828

Auteurs

Ryohei Otani (R)

Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan. ryouhei-ohtani@umin.ac.jp.

Masachika Ikegami (M)

Department of Musculoskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan.

Ryoji Yamada (R)

Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan.

Hirohisa Yajima (H)

Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan.

Shinji Kawamura (S)

Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan.

Sakura Shimizu (S)

Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan.

Shota Tanaka (S)

Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.

Shunsaku Takayanagi (S)

Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.

Hirokazu Takami (H)

Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.

Tatsuro Yamaguchi (T)

Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH