Air-to-land transitions: from wingless animals and plant seeds to shuttlecocks and bio-inspired robots.
aerial righting
bio-inspired robots
landing
samaras
wingless animals
Journal
Bioinspiration & biomimetics
ISSN: 1748-3190
Titre abrégé: Bioinspir Biomim
Pays: England
ID NLM: 101292902
Informations de publication
Date de publication:
08 08 2023
08 08 2023
Historique:
received:
08
01
2023
accepted:
02
06
2023
medline:
10
8
2023
pubmed:
8
8
2023
entrez:
8
8
2023
Statut:
epublish
Résumé
Recent observations of wingless animals, including jumping nematodes, springtails, insects, and wingless vertebrates like geckos, snakes, and salamanders, have shown that their adaptations and body morphing are essential for rapid self-righting and controlled landing. These skills can reduce the risk of physical damage during collision, minimize recoil during landing, and allow for a quick escape response to minimize predation risk. The size, mass distribution, and speed of an animal determine its self-righting method, with larger animals depending on the conservation of angular momentum and smaller animals primarily using aerodynamic forces. Many animals falling through the air, from nematodes to salamanders, adopt a skydiving posture while descending. Similarly, plant seeds such as dandelions and samaras are able to turn upright in mid-air using aerodynamic forces and produce high decelerations. These aerial capabilities allow for a wide dispersal range, low-impact collisions, and effective landing and settling. Recently, small robots that can right themselves for controlled landings have been designed based on principles of aerial maneuvering in animals. Further research into the effects of unsteady flows on self-righting and landing in small arthropods, particularly those exhibiting explosive catapulting, could reveal how morphological features, flow dynamics, and physical mechanisms contribute to effective mid-air control. More broadly, studying apterygote (wingless insects) landing could also provide insight into the origin of insect flight. These research efforts have the potential to lead to the bio-inspired design of aerial micro-vehicles, sports projectiles, parachutes, and impulsive robots that can land upright in unsteady flow conditions.
Identifiants
pubmed: 37552773
doi: 10.1088/1748-3190/acdb1c
doi:
Types de publication
Journal Article
Review
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIGMS NIH HHS
ID : R35 GM142588
Pays : United States
Informations de copyright
© 2023 IOP Publishing Ltd.