Air-to-land transitions: from wingless animals and plant seeds to shuttlecocks and bio-inspired robots.


Journal

Bioinspiration & biomimetics
ISSN: 1748-3190
Titre abrégé: Bioinspir Biomim
Pays: England
ID NLM: 101292902

Informations de publication

Date de publication:
08 08 2023
Historique:
received: 08 01 2023
accepted: 02 06 2023
medline: 10 8 2023
pubmed: 8 8 2023
entrez: 8 8 2023
Statut: epublish

Résumé

Recent observations of wingless animals, including jumping nematodes, springtails, insects, and wingless vertebrates like geckos, snakes, and salamanders, have shown that their adaptations and body morphing are essential for rapid self-righting and controlled landing. These skills can reduce the risk of physical damage during collision, minimize recoil during landing, and allow for a quick escape response to minimize predation risk. The size, mass distribution, and speed of an animal determine its self-righting method, with larger animals depending on the conservation of angular momentum and smaller animals primarily using aerodynamic forces. Many animals falling through the air, from nematodes to salamanders, adopt a skydiving posture while descending. Similarly, plant seeds such as dandelions and samaras are able to turn upright in mid-air using aerodynamic forces and produce high decelerations. These aerial capabilities allow for a wide dispersal range, low-impact collisions, and effective landing and settling. Recently, small robots that can right themselves for controlled landings have been designed based on principles of aerial maneuvering in animals. Further research into the effects of unsteady flows on self-righting and landing in small arthropods, particularly those exhibiting explosive catapulting, could reveal how morphological features, flow dynamics, and physical mechanisms contribute to effective mid-air control. More broadly, studying apterygote (wingless insects) landing could also provide insight into the origin of insect flight. These research efforts have the potential to lead to the bio-inspired design of aerial micro-vehicles, sports projectiles, parachutes, and impulsive robots that can land upright in unsteady flow conditions.

Identifiants

pubmed: 37552773
doi: 10.1088/1748-3190/acdb1c
doi:

Types de publication

Journal Article Review Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIGMS NIH HHS
ID : R35 GM142588
Pays : United States

Informations de copyright

© 2023 IOP Publishing Ltd.

Auteurs

Victor M Ortega-Jimenez (VM)

School of Biology and Ecology, University of Maine, Orono, ME 04469, United States of America.

Ardian Jusufi (A)

Soft Kinetic Group, Engineering Sciences Department, Empa Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, Dübendorf 8600, Switzerland.
University of Zurich, Institutes for Neuroinformatics and Palaeontology, Winterthurerstrasse 190, Zurich 8057, Switzerland.
Macquarie University, Sydney, NSW 2109, Australia.

Christian E Brown (CE)

Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Science Center 110, Tampa, FL 33620, United States of America.

Yu Zeng (Y)

Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Science Center 110, Tampa, FL 33620, United States of America.
Department of Integrative Biology, University of California, Berkeley, CA 94720, United States of America.

Sunny Kumar (S)

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States of America.

Robert Siddall (R)

Aerial Robotics Lab, Imperial College of London, London, United Kingdom.

Baekgyeom Kim (B)

Department of Mechanical Engineering, Ajou University, Gyeonggi-do 16499, Republic of Korea.

Elio J Challita (EJ)

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States of America.

Zoe Pavlik (Z)

School of Biology and Ecology, University of Maine, Orono, ME 04469, United States of America.

Meredith Priess (M)

School of Biology and Ecology, University of Maine, Orono, ME 04469, United States of America.

Thomas Umhofer (T)

School of Biology and Ecology, University of Maine, Orono, ME 04469, United States of America.

Je-Sung Koh (JS)

Department of Mechanical Engineering, Ajou University, Gyeonggi-do 16499, Republic of Korea.

John J Socha (JJ)

Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America.

Robert Dudley (R)

Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Science Center 110, Tampa, FL 33620, United States of America.
Smithsonian Tropical Research Institute, Balboa, Panama.

M Saad Bhamla (MS)

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States of America.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH