Cryo-EM structures of human zinc transporter ZnT7 reveal the mechanism of Zn
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
08 08 2023
08 08 2023
Historique:
received:
14
03
2022
accepted:
27
07
2023
medline:
10
8
2023
pubmed:
9
8
2023
entrez:
8
8
2023
Statut:
epublish
Résumé
Zinc ions (Zn
Identifiants
pubmed: 37553324
doi: 10.1038/s41467-023-40521-5
pii: 10.1038/s41467-023-40521-5
pmc: PMC10409766
doi:
Substances chimiques
Carrier Proteins
0
Zinc
J41CSQ7QDS
zinc-binding protein
0
SLC30A7 protein, human
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4770Informations de copyright
© 2023. Springer Nature Limited.
Références
Andreini, C., Banci, L., Bertini, I. & Rosato, A. Counting the zinc-proteins encoded in the human genome. J. Proteome Res. 5, 196–201 (2006).
pubmed: 16396512
doi: 10.1021/pr050361j
Eide, D. J. Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta 1763, 711–722 (2006).
pubmed: 16675045
doi: 10.1016/j.bbamcr.2006.03.005
Kambe, T. Molecular architecture and function of ZnT transporters. Curr. Top. Membr. 69, 199–220 (2012).
pubmed: 23046652
doi: 10.1016/B978-0-12-394390-3.00008-2
Kambe, T., Taylor, K. M. & Fu, D. Zinc transporters and their functional integration in mammalian cells. J. Biol. Chem. 296, 100320 (2021).
pubmed: 33485965
pmcid: 7949119
doi: 10.1016/j.jbc.2021.100320
Gao, H. L. et al. Golgi apparatus localization of ZNT7 in the mouse cerebellum. Histol. Histopathol. 24, 567–572 (2009).
pubmed: 19283665
Chi, Z. H. et al. ZNT7 and Zn
pubmed: 19012241
Kirschke, C. P. & Huang, L. ZnT7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus. J. Biol. Chem. 278, 4096–4102 (2003).
pubmed: 12446736
doi: 10.1074/jbc.M207644200
Gao, H. L. et al. Expression of zinc transporter ZnT7 in mouse superior cervical ganglion. Auton. Neurosci. 140, 59–65 (2008).
pubmed: 18499530
doi: 10.1016/j.autneu.2008.04.002
Kowada, T. et al. Quantitative imaging of labile Zn
pubmed: 32997976
doi: 10.1016/j.chembiol.2020.09.003
Amagai, Y. et al. Zinc homeostasis governed by Golgi-resident ZnT family members regulates ERp44-mediated proteostasis at the ER-Golgi interface. Nat. Commun. 14, 2683 (2023).
pubmed: 37160917
pmcid: 10170084
doi: 10.1038/s41467-023-38397-6
Huang, L. et al. ZnT7 (Slc30a7)-deficient mice display reduced body zinc status and body fat accumulation. J. Biol. Chem. 282, 37053–37063 (2007).
pubmed: 17954933
doi: 10.1074/jbc.M706631200
Tepaamorndech, S., Huang, L. & Kirschke, C. P. A null-mutation in the Znt7 gene accelerates prostate tumor formation in a transgenic adenocarcinoma mouse prostate model. Cancer Lett. 308, 33–42 (2011).
pubmed: 21621325
doi: 10.1016/j.canlet.2011.04.011
Tepaamorndech, S. et al. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activation and glucose uptake. FEBS J. 283, 378–394 (2016).
pubmed: 26524605
doi: 10.1111/febs.13582
Lu, M. & Fu, D. Structure of the zinc transporter YiiP. Science 317, 1746–1748 (2007).
pubmed: 17717154
doi: 10.1126/science.1143748
Lu, M., Chai, J. & Fu, D. Structural basis for autoregulation of the zinc transporter YiiP. Nat. Struct. Mol. Biol. 16, 1063–1067 (2009).
pubmed: 19749753
pmcid: 2758918
doi: 10.1038/nsmb.1662
Coudray, N. et al. Inward-facing conformation of the zinc transporter YiiP revealed by cryoelectron microscopy. Proc. Natl Acad. Sci. 110, 2140–2145 (2013).
pubmed: 23341604
pmcid: 3568326
doi: 10.1073/pnas.1215455110
Lopez-Redondo, M. et al. Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP. Proc. Natl Acad. Sci. 115, 3042–3047 (2018).
pubmed: 29507252
pmcid: 5866550
doi: 10.1073/pnas.1715051115
Lopez-Redondo, M. et al. Zinc binding alters the conformational dynamics and drives the transport cycle of the cation diffusion facilitator YiiP. J. Gen. Physiol. 153, e202112873 (2021).
pubmed: 34254979
pmcid: 8282283
doi: 10.1085/jgp.202112873
Xue, J. et al. Cryo-EM structures of human ZnT8 in both outward- and inward-facing conformations. Elife 9, e58823 (2020).
pubmed: 32723473
pmcid: 7428307
doi: 10.7554/eLife.58823
Outten, C. E. & O’Halloran, T. V. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292, 2488–2492 (2001).
pubmed: 11397910
doi: 10.1126/science.1060331
Liu, R. et al. Organelle-level labile Zn
pubmed: 35238552
pmcid: 8963189
doi: 10.1021/acssensors.1c02153
Tanaka, N., Kawachi, M., Fujiwara, T. & Maeshima, M. Zinc-binding and structural properties of the histidine-rich loop of Arabidopsis thaliana vacuolar membrane zinc transporter MTP1. FEBS Open Bio. 3, 218–224 (2013).
pubmed: 23772397
pmcid: 3668522
doi: 10.1016/j.fob.2013.04.004
Kawachi, M., Kobae, Y., Mimura, T. & Maeshima, M. Deletion of a histidine-rich loop of AtMTP1, a vacuolar Zn
pubmed: 18203721
pmcid: 2417167
doi: 10.1074/jbc.M707646200
Tanaka, Y. et al. Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. Nature 496, 247–251 (2013).
pubmed: 23535598
doi: 10.1038/nature12014
Miyauchi, H. et al. Structural basis for xenobiotic extrusion by eukaryotic MATE transporter. Nat. Commun. 8, 1633 (2017).
pubmed: 29158478
pmcid: 5696359
doi: 10.1038/s41467-017-01541-0
Dandey, V. P. et al. Time-resolved cryo-EM using Spotiton. Nat. Methods 17, 897–900 (2020).
pubmed: 32778833
pmcid: 7799389
doi: 10.1038/s41592-020-0925-6
Jaenecke, F. et al. Generation of conformation-specific antibody fragments for crystallization of the multidrug resistance transporter MdfA. Methods Mol. Biol. 1700, 97–109 (2018).
pubmed: 29177828
doi: 10.1007/978-1-4939-7454-2_7
Scheres, S. H. W. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
pubmed: 23000701
pmcid: 3690530
doi: 10.1016/j.jsb.2012.09.006
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).
pubmed: 30412051
pmcid: 6250425
doi: 10.7554/eLife.42166
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
pubmed: 16182563
doi: 10.1016/j.jsb.2005.07.007
Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J. 478, 4169–4185 (2021).
pubmed: 34783343
doi: 10.1042/BCJ20210708
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473
doi: 10.1038/nmeth.4169
Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
doi: 10.1016/j.jsb.2015.08.008
pubmed: 26278980
pmcid: 6760662
Asarnow, D., Palovcak, E. & Cheng, Y. Asarnow/pyem: UCSF pyem v0.5 (v0.5). Zenodo https://doi.org/10.5281/zenodo.3576630 (2019).
Punjani, A. & Fleet, D. J. 3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).
pubmed: 33582281
doi: 10.1016/j.jsb.2021.107702
Burnley, T., Palmer, C. M. & Winn, M. Recent developments in the CCP-EM software suite. Acta Crystallogr. D. Struct. Biol. 73, 469–477 (2017).
pubmed: 28580908
pmcid: 5458488
doi: 10.1107/S2059798317007859
Emsley, P. & Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D. Bio. Crystallogr. 60, 2126–2132 (2004).
doi: 10.1107/S0907444904019158
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Bio. Crystallogr. 66, 486–501 (2010).
doi: 10.1107/S0907444910007493
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Bio. Crystallogr. 66, 213–221 (2010).
doi: 10.1107/S0907444909052925
Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).
pubmed: 17452350
pmcid: 1933162
doi: 10.1093/nar/gkm216
DeLano, W. L. The PyMOL molecular graphics system. http://www.pymol.org (2002).
Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254
doi: 10.1002/jcc.20084
Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
pubmed: 28710774
doi: 10.1002/pro.3235
Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).
pubmed: 28968734
doi: 10.1093/bib/bbx108
Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018).
pubmed: 28836357
doi: 10.1002/pro.3280
Unni, S. et al. Web servers and services for electrostatics calculations with APBS and PDB2PQR. J. Comput. Chem. 32, 1488–1491 (2011).
pubmed: 21425296
pmcid: 3062090
doi: 10.1002/jcc.21720