Cryo-EM structures of human zinc transporter ZnT7 reveal the mechanism of Zn


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
08 08 2023
Historique:
received: 14 03 2022
accepted: 27 07 2023
medline: 10 8 2023
pubmed: 9 8 2023
entrez: 8 8 2023
Statut: epublish

Résumé

Zinc ions (Zn

Identifiants

pubmed: 37553324
doi: 10.1038/s41467-023-40521-5
pii: 10.1038/s41467-023-40521-5
pmc: PMC10409766
doi:

Substances chimiques

Carrier Proteins 0
Zinc J41CSQ7QDS
zinc-binding protein 0
SLC30A7 protein, human 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4770

Informations de copyright

© 2023. Springer Nature Limited.

Références

Andreini, C., Banci, L., Bertini, I. & Rosato, A. Counting the zinc-proteins encoded in the human genome. J. Proteome Res. 5, 196–201 (2006).
pubmed: 16396512 doi: 10.1021/pr050361j
Eide, D. J. Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta 1763, 711–722 (2006).
pubmed: 16675045 doi: 10.1016/j.bbamcr.2006.03.005
Kambe, T. Molecular architecture and function of ZnT transporters. Curr. Top. Membr. 69, 199–220 (2012).
pubmed: 23046652 doi: 10.1016/B978-0-12-394390-3.00008-2
Kambe, T., Taylor, K. M. & Fu, D. Zinc transporters and their functional integration in mammalian cells. J. Biol. Chem. 296, 100320 (2021).
pubmed: 33485965 pmcid: 7949119 doi: 10.1016/j.jbc.2021.100320
Gao, H. L. et al. Golgi apparatus localization of ZNT7 in the mouse cerebellum. Histol. Histopathol. 24, 567–572 (2009).
pubmed: 19283665
Chi, Z. H. et al. ZNT7 and Zn
pubmed: 19012241
Kirschke, C. P. & Huang, L. ZnT7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus. J. Biol. Chem. 278, 4096–4102 (2003).
pubmed: 12446736 doi: 10.1074/jbc.M207644200
Gao, H. L. et al. Expression of zinc transporter ZnT7 in mouse superior cervical ganglion. Auton. Neurosci. 140, 59–65 (2008).
pubmed: 18499530 doi: 10.1016/j.autneu.2008.04.002
Kowada, T. et al. Quantitative imaging of labile Zn
pubmed: 32997976 doi: 10.1016/j.chembiol.2020.09.003
Amagai, Y. et al. Zinc homeostasis governed by Golgi-resident ZnT family members regulates ERp44-mediated proteostasis at the ER-Golgi interface. Nat. Commun. 14, 2683 (2023).
pubmed: 37160917 pmcid: 10170084 doi: 10.1038/s41467-023-38397-6
Huang, L. et al. ZnT7 (Slc30a7)-deficient mice display reduced body zinc status and body fat accumulation. J. Biol. Chem. 282, 37053–37063 (2007).
pubmed: 17954933 doi: 10.1074/jbc.M706631200
Tepaamorndech, S., Huang, L. & Kirschke, C. P. A null-mutation in the Znt7 gene accelerates prostate tumor formation in a transgenic adenocarcinoma mouse prostate model. Cancer Lett. 308, 33–42 (2011).
pubmed: 21621325 doi: 10.1016/j.canlet.2011.04.011
Tepaamorndech, S. et al. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activation and glucose uptake. FEBS J. 283, 378–394 (2016).
pubmed: 26524605 doi: 10.1111/febs.13582
Lu, M. & Fu, D. Structure of the zinc transporter YiiP. Science 317, 1746–1748 (2007).
pubmed: 17717154 doi: 10.1126/science.1143748
Lu, M., Chai, J. & Fu, D. Structural basis for autoregulation of the zinc transporter YiiP. Nat. Struct. Mol. Biol. 16, 1063–1067 (2009).
pubmed: 19749753 pmcid: 2758918 doi: 10.1038/nsmb.1662
Coudray, N. et al. Inward-facing conformation of the zinc transporter YiiP revealed by cryoelectron microscopy. Proc. Natl Acad. Sci. 110, 2140–2145 (2013).
pubmed: 23341604 pmcid: 3568326 doi: 10.1073/pnas.1215455110
Lopez-Redondo, M. et al. Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP. Proc. Natl Acad. Sci. 115, 3042–3047 (2018).
pubmed: 29507252 pmcid: 5866550 doi: 10.1073/pnas.1715051115
Lopez-Redondo, M. et al. Zinc binding alters the conformational dynamics and drives the transport cycle of the cation diffusion facilitator YiiP. J. Gen. Physiol. 153, e202112873 (2021).
pubmed: 34254979 pmcid: 8282283 doi: 10.1085/jgp.202112873
Xue, J. et al. Cryo-EM structures of human ZnT8 in both outward- and inward-facing conformations. Elife 9, e58823 (2020).
pubmed: 32723473 pmcid: 7428307 doi: 10.7554/eLife.58823
Outten, C. E. & O’Halloran, T. V. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292, 2488–2492 (2001).
pubmed: 11397910 doi: 10.1126/science.1060331
Liu, R. et al. Organelle-level labile Zn
pubmed: 35238552 pmcid: 8963189 doi: 10.1021/acssensors.1c02153
Tanaka, N., Kawachi, M., Fujiwara, T. & Maeshima, M. Zinc-binding and structural properties of the histidine-rich loop of Arabidopsis thaliana vacuolar membrane zinc transporter MTP1. FEBS Open Bio. 3, 218–224 (2013).
pubmed: 23772397 pmcid: 3668522 doi: 10.1016/j.fob.2013.04.004
Kawachi, M., Kobae, Y., Mimura, T. & Maeshima, M. Deletion of a histidine-rich loop of AtMTP1, a vacuolar Zn
pubmed: 18203721 pmcid: 2417167 doi: 10.1074/jbc.M707646200
Tanaka, Y. et al. Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. Nature 496, 247–251 (2013).
pubmed: 23535598 doi: 10.1038/nature12014
Miyauchi, H. et al. Structural basis for xenobiotic extrusion by eukaryotic MATE transporter. Nat. Commun. 8, 1633 (2017).
pubmed: 29158478 pmcid: 5696359 doi: 10.1038/s41467-017-01541-0
Dandey, V. P. et al. Time-resolved cryo-EM using Spotiton. Nat. Methods 17, 897–900 (2020).
pubmed: 32778833 pmcid: 7799389 doi: 10.1038/s41592-020-0925-6
Jaenecke, F. et al. Generation of conformation-specific antibody fragments for crystallization of the multidrug resistance transporter MdfA. Methods Mol. Biol. 1700, 97–109 (2018).
pubmed: 29177828 doi: 10.1007/978-1-4939-7454-2_7
Scheres, S. H. W. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
pubmed: 23000701 pmcid: 3690530 doi: 10.1016/j.jsb.2012.09.006
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).
pubmed: 30412051 pmcid: 6250425 doi: 10.7554/eLife.42166
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
pubmed: 16182563 doi: 10.1016/j.jsb.2005.07.007
Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J. 478, 4169–4185 (2021).
pubmed: 34783343 doi: 10.1042/BCJ20210708
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473 doi: 10.1038/nmeth.4169
Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
doi: 10.1016/j.jsb.2015.08.008 pubmed: 26278980 pmcid: 6760662
Asarnow, D., Palovcak, E. & Cheng, Y. Asarnow/pyem: UCSF pyem v0.5 (v0.5). Zenodo https://doi.org/10.5281/zenodo.3576630 (2019).
Punjani, A. & Fleet, D. J. 3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).
pubmed: 33582281 doi: 10.1016/j.jsb.2021.107702
Burnley, T., Palmer, C. M. & Winn, M. Recent developments in the CCP-EM software suite. Acta Crystallogr. D. Struct. Biol. 73, 469–477 (2017).
pubmed: 28580908 pmcid: 5458488 doi: 10.1107/S2059798317007859
Emsley, P. & Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D. Bio. Crystallogr. 60, 2126–2132 (2004).
doi: 10.1107/S0907444904019158
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Bio. Crystallogr. 66, 486–501 (2010).
doi: 10.1107/S0907444910007493
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Bio. Crystallogr. 66, 213–221 (2010).
doi: 10.1107/S0907444909052925
Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).
pubmed: 17452350 pmcid: 1933162 doi: 10.1093/nar/gkm216
DeLano, W. L. The PyMOL molecular graphics system. http://www.pymol.org (2002).
Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084
Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
pubmed: 28710774 doi: 10.1002/pro.3235
Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).
pubmed: 28968734 doi: 10.1093/bib/bbx108
Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018).
pubmed: 28836357 doi: 10.1002/pro.3280
Unni, S. et al. Web servers and services for electrostatics calculations with APBS and PDB2PQR. J. Comput. Chem. 32, 1488–1491 (2011).
pubmed: 21425296 pmcid: 3062090 doi: 10.1002/jcc.21720

Auteurs

Han Ba Bui (HB)

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan.

Satoshi Watanabe (S)

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan.

Norimichi Nomura (N)

Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.

Kehong Liu (K)

Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.

Tomoko Uemura (T)

Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.

Michio Inoue (M)

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.

Akihisa Tsutsumi (A)

Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

Hiroyuki Fujita (H)

Advanced Research Laboratory, Canon Medical Systems Corporation, Otawara, 324-8550, Japan.

Kengo Kinoshita (K)

Department of System Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, 980-8579, Japan.
Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, 980-8573, Japan.

Yukinari Kato (Y)

Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Japan.

So Iwata (S)

Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.

Masahide Kikkawa (M)

Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

Kenji Inaba (K)

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan. kenji.inaba.a1@tohoku.ac.jp.
Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan. kenji.inaba.a1@tohoku.ac.jp.
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan. kenji.inaba.a1@tohoku.ac.jp.
Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan. kenji.inaba.a1@tohoku.ac.jp.
Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo, Japan. kenji.inaba.a1@tohoku.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH