Ixeris dentata and Lactobacillus gasseri media protect against periodontitis through Nrf2-HO-1 signalling pathway.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
08 08 2023
Historique:
received: 23 02 2023
accepted: 01 08 2023
medline: 10 8 2023
pubmed: 9 8 2023
entrez: 8 8 2023
Statut: epublish

Résumé

Periodontitis is an infectious inflammation in the gums characterized by loss of periodontal ligaments and alveolar bone. Its persistent inflammation could result in tooth loss and other health issues. Ixeris dentata (IXD) and Lactobacillus gasseri media (LGM) demonstrated strong antioxidant activity, which may prevent oxidative and inflammatory periodontitis. Here, IXD and LGM extracts were investigated for antioxidative activity against oral discomfort and evaluated for their synergistic effect against oxidative and inflammatory periodontitis in a mouse model. IXD/LGM suppressed pro-inflammatory cytokines like interleukin (IL)-1β, IL-6, and TNF-α. Additionally, it reduced pro-inflammatory mediators, nitric oxide, iNOS (inducible nitric oxide synthase), and COX-2 (cyclooxygenase-2) and enhanced AKT, Nrf2, and HO-1 activation. Similarly, IXD/LGM treatment elevated osteogenic proteins and mRNAs; alkaline phosphatase, collagen type 1 (COL1), osteopontin (OPN), and runt-related transcription factor 2 (RUNX2). Hematoxylin and Eosin (H&E) staining and micro-CT analysis confirm the positive impact of IXD/LGM on the periodontal structure and its associated inflammation. These findings demonstrate that IXD/LGM inhibits oxidative stress, periodontal inflammation, and its resultant alveolar bone loss in which Akt (also known as protein kinase B)-nuclear factor-erythroid 2-related factor 2 (Nrf2)-hemoxygenase-1 (HO-1) signaling is involved. Thus, IXD/LGM is a potential candidate against oxidative/inflammatory stress-associated periodontitis.

Identifiants

pubmed: 37553432
doi: 10.1038/s41598-023-39853-5
pii: 10.1038/s41598-023-39853-5
pmc: PMC10409819
doi:

Substances chimiques

Proto-Oncogene Proteins c-akt EC 2.7.11.1
NF-E2-Related Factor 2 0
Antioxidants 0
Heme Oxygenase-1 EC 1.14.14.18

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

12861

Informations de copyright

© 2023. Springer Nature Limited.

Références

Di Profio, B., Villar, C. C., Saraiva, L., Ortega, K. L. & Pannuti, C. M. Is periodontitis a risk factor for infections in cirrhotic patients?. Med. Hypotheses 106, 19–22. https://doi.org/10.1016/j.mehy.2017.06.022 (2017).
doi: 10.1016/j.mehy.2017.06.022 pubmed: 28818265
Cekici, A., Kantarci, A., Hasturk, H. & Van Dyke, T. E. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000(64), 57–80. https://doi.org/10.1111/prd.12002 (2014).
doi: 10.1111/prd.12002
Kany, S., Vollrath, J. T. & Relja, B. Cytokines in inflammatory disease. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20236008 (2019).
doi: 10.3390/ijms20236008 pubmed: 31795299 pmcid: 6929211
Shao, M. Y., Huang, P., Cheng, R. & Hu, T. Interleukin-6 polymorphisms modify the risk of periodontitis: A systematic review and meta-analysis. J. Zhejiang Univ. Sci. B 10, 920–927. https://doi.org/10.1631/jzus.B0920279 (2009).
doi: 10.1631/jzus.B0920279 pubmed: 19946956 pmcid: 2789527
Otterbein, L. E. & Choi, A. M. Heme oxygenase: Colors of defense against cellular stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L1029-1037. https://doi.org/10.1152/ajplung.2000.279.6.L1029 (2000).
doi: 10.1152/ajplung.2000.279.6.L1029 pubmed: 11076792
Hienz, S. A., Paliwal, S. & Ivanovski, S. Mechanisms of bone resorption in periodontitis. J. Immunol. Res. 2015, 615486. https://doi.org/10.1155/2015/615486 (2015).
doi: 10.1155/2015/615486 pubmed: 26065002 pmcid: 4433701
Kearns, A. E., Khosla, S. & Kostenuik, P. J. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr. Rev. 29, 155–192. https://doi.org/10.1210/er.2007-0014 (2008).
doi: 10.1210/er.2007-0014 pubmed: 18057140
Yang, L. C. et al. Lactobacillus plantarum GKM3 and Lactobacillus paracasei GKS6 supplementation ameliorates bone loss in ovariectomized mice by promoting osteoblast differentiation and inhibiting osteoclast formation. Nutrients https://doi.org/10.3390/nu12071914 (2020).
doi: 10.3390/nu12071914 pubmed: 33353102 pmcid: 7767216
Tanaka, Y., Nakayamada, S. & Okada, Y. Osteoblasts and osteoclasts in bone remodeling and inflammation. Curr. Drug Targets Inflamm. Allergy 4, 325–328. https://doi.org/10.2174/1568010054022015 (2005).
doi: 10.2174/1568010054022015 pubmed: 16101541
Karki, S. et al. Quantification of major compounds from Ixeris dentata, Ixeris dentata Var. albiflora, and Ixeris sonchifolia and their comparative anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 cells. J. Med. Food 18, 83–94. https://doi.org/10.1089/jmf.2014.3205 (2015).
doi: 10.1089/jmf.2014.3205 pubmed: 25383596
Kim, M.-J., Kim, J.-S., Kang, W.-H. & Jeong, D.-M. Effect on antimutagenic and cancer cell growth inhibition of Ixeris dentata Nakai. Korean J. Med. Crop Sci. 10, 139–143 (2002).
Oh, S. H., Sung, T. H. & Kim, M. R. Ixeris dentata extract maintains glutathione concentrations in mouse brain tissue under oxidative stress induced by kainic acid. J. Med. Food 6, 353–358. https://doi.org/10.1089/109662003772519912 (2003).
doi: 10.1089/109662003772519912 pubmed: 14977444
Park, E. K. et al. Lactic acid bacterial fermentation increases the antiallergic effects of Ixeris dentata. J. Microbiol. Biotechnol. 18, 308–313 (2008).
pubmed: 18309276
Boesing, F., Patino, J. S., da Silva, V. R. & Moreira, E. A. The interface between obesity and periodontitis with emphasis on oxidative stress and inflammatory response. Obes. Rev. 10, 290–297. https://doi.org/10.1111/j.1467-789X.2008.00555.x (2009).
doi: 10.1111/j.1467-789X.2008.00555.x pubmed: 19207875
Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A. & Colombo, R. Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta 329, 23–38. https://doi.org/10.1016/s0009-8981(03)00003-2 (2003).
doi: 10.1016/s0009-8981(03)00003-2 pubmed: 12589963
Luo, X., Wan, Q., Cheng, L. & Xu, R. Mechanisms of bone remodeling and therapeutic strategies in chronic apical periodontitis. Front. Cell. Infect. Microbiol. 12, 908859. https://doi.org/10.3389/fcimb.2022.908859 (2022).
doi: 10.3389/fcimb.2022.908859 pubmed: 35937695 pmcid: 9353524
Deng, W. et al. Dendrobine attenuates osteoclast differentiation through modulating ROS/NFATc1/ MMP9 pathway and prevents inflammatory bone destruction. Phytomedicine 96, 153838. https://doi.org/10.1016/j.phymed.2021.153838 (2022).
doi: 10.1016/j.phymed.2021.153838 pubmed: 34801352
Chen, X. et al. Osteoblast-osteoclast interactions. Connect. Tissue Res. 59, 99–107. https://doi.org/10.1080/03008207.2017.1290085 (2018).
doi: 10.1080/03008207.2017.1290085 pubmed: 28324674
Lee, H. Y., Gu, M., Cheng, J., Suh, J. W. & Chae, H. J. Ixeris dentata and Lactobacillus gasseri extracts improve salivary secretion capability in diabetes-associated dry mouth rat model. Nutrients https://doi.org/10.3390/nu12051331 (2020).
doi: 10.3390/nu12051331 pubmed: 33375705 pmcid: 7824385
Assuma, R., Oates, T., Cochran, D., Amar, S. & Graves, D. T. IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J. Immunol. 160, 403–409 (1998).
doi: 10.4049/jimmunol.160.1.403 pubmed: 9551997
Bezerra, M. M. et al. Selective cyclooxygenase-2 inhibition prevents alveolar bone loss in experimental periodontitis in rats. J. Periodontol. 71, 1009–1014. https://doi.org/10.1902/jop.2000.71.6.1009 (2000).
doi: 10.1902/jop.2000.71.6.1009 pubmed: 10914805
Chapple, I. L. & Matthews, J. B. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontology 2000(43), 160–232. https://doi.org/10.1111/j.1600-0757.2006.00178.x (2007).
doi: 10.1111/j.1600-0757.2006.00178.x
Ryu, E. Y. et al. Anti-inflammatory effect of heme oxygenase-1 toward Porphyromonas gingivalis lipopolysaccharide in macrophages exposed to gomisins A, G, and J. J. Med. Food 14, 1519–1526. https://doi.org/10.1089/jmf.2011.1656 (2011).
doi: 10.1089/jmf.2011.1656 pubmed: 22145771 pmcid: 3229186
Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 40, 1769–1777. https://doi.org/10.1177/0271678X20943823 (2020).
doi: 10.1177/0271678X20943823 pubmed: 32663096 pmcid: 7430098
Yuh, D. Y. et al. The secreted protein DEL-1 activates a beta3 integrin-FAK-ERK1/2-RUNX2 pathway and promotes osteogenic differentiation and bone regeneration. J. Biol. Chem. 295, 7261–7273. https://doi.org/10.1074/jbc.RA120.013024 (2020).
doi: 10.1074/jbc.RA120.013024 pubmed: 32280065 pmcid: 7247308
Gu, M., Cheng, J., Lee, Y. G., Cho, J. H. & Suh, J. W. Discovery of novel iminosugar compounds produced by Lactobacillus paragasseri MJM60645 and their anti-biofilm activity against Streptococcus mutans. Microbiol. Spectr. 10, e0112222. https://doi.org/10.1128/spectrum.01122-22 (2022).
doi: 10.1128/spectrum.01122-22 pubmed: 35863019
Lee, G. H. et al. Anthocyanins attenuate endothelial dysfunction through regulation of uncoupling of nitric oxide synthase in aged rats. Aging Cell 19, e13279. https://doi.org/10.1111/acel.13279 (2020).
doi: 10.1111/acel.13279 pubmed: 33274583 pmcid: 7744959
Zito, E., Hansen, H. G., Yeo, G. S., Fujii, J. & Ron, D. Endoplasmic reticulum thiol oxidase deficiency leads to ascorbic acid depletion and noncanonical scurvy in mice. Mol. Cell 48, 39–51. https://doi.org/10.1016/j.molcel.2012.08.010 (2012).
doi: 10.1016/j.molcel.2012.08.010 pubmed: 22981861 pmcid: 3473360
De Leon, J. A. D. & Borges, C. R. Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. J. Vis. Exp. https://doi.org/10.3791/61122 (2020).
doi: 10.3791/61122 pubmed: 32744523

Auteurs

Hwa-Young Lee (HY)

Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, 54907, South Korea.
Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeonbuk, 54907, Republic of Korea.

Geum-Hwa Lee (GH)

Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeonbuk, 54907, Republic of Korea.

Ji-Hyun Kim (JH)

Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, 54907, South Korea.

Jinhua Cheng (J)

Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea.

Joo-Hyung Cho (JH)

Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea.

Joo-Won Suh (JW)

Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea.

Han-Jung Chae (HJ)

Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, 54907, South Korea. hjchae@jbnu.ac.kr.
School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, 54896, South Korea. hjchae@jbnu.ac.kr.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
C-Reactive Protein Humans Biomarkers Inflammation
Humans Immune Checkpoint Inhibitors Lung Neoplasms Prognosis Inflammation

Classifications MeSH