Ixeris dentata and Lactobacillus gasseri media protect against periodontitis through Nrf2-HO-1 signalling pathway.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
08 08 2023
08 08 2023
Historique:
received:
23
02
2023
accepted:
01
08
2023
medline:
10
8
2023
pubmed:
9
8
2023
entrez:
8
8
2023
Statut:
epublish
Résumé
Periodontitis is an infectious inflammation in the gums characterized by loss of periodontal ligaments and alveolar bone. Its persistent inflammation could result in tooth loss and other health issues. Ixeris dentata (IXD) and Lactobacillus gasseri media (LGM) demonstrated strong antioxidant activity, which may prevent oxidative and inflammatory periodontitis. Here, IXD and LGM extracts were investigated for antioxidative activity against oral discomfort and evaluated for their synergistic effect against oxidative and inflammatory periodontitis in a mouse model. IXD/LGM suppressed pro-inflammatory cytokines like interleukin (IL)-1β, IL-6, and TNF-α. Additionally, it reduced pro-inflammatory mediators, nitric oxide, iNOS (inducible nitric oxide synthase), and COX-2 (cyclooxygenase-2) and enhanced AKT, Nrf2, and HO-1 activation. Similarly, IXD/LGM treatment elevated osteogenic proteins and mRNAs; alkaline phosphatase, collagen type 1 (COL1), osteopontin (OPN), and runt-related transcription factor 2 (RUNX2). Hematoxylin and Eosin (H&E) staining and micro-CT analysis confirm the positive impact of IXD/LGM on the periodontal structure and its associated inflammation. These findings demonstrate that IXD/LGM inhibits oxidative stress, periodontal inflammation, and its resultant alveolar bone loss in which Akt (also known as protein kinase B)-nuclear factor-erythroid 2-related factor 2 (Nrf2)-hemoxygenase-1 (HO-1) signaling is involved. Thus, IXD/LGM is a potential candidate against oxidative/inflammatory stress-associated periodontitis.
Identifiants
pubmed: 37553432
doi: 10.1038/s41598-023-39853-5
pii: 10.1038/s41598-023-39853-5
pmc: PMC10409819
doi:
Substances chimiques
Proto-Oncogene Proteins c-akt
EC 2.7.11.1
NF-E2-Related Factor 2
0
Antioxidants
0
Heme Oxygenase-1
EC 1.14.14.18
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
12861Informations de copyright
© 2023. Springer Nature Limited.
Références
Di Profio, B., Villar, C. C., Saraiva, L., Ortega, K. L. & Pannuti, C. M. Is periodontitis a risk factor for infections in cirrhotic patients?. Med. Hypotheses 106, 19–22. https://doi.org/10.1016/j.mehy.2017.06.022 (2017).
doi: 10.1016/j.mehy.2017.06.022
pubmed: 28818265
Cekici, A., Kantarci, A., Hasturk, H. & Van Dyke, T. E. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000(64), 57–80. https://doi.org/10.1111/prd.12002 (2014).
doi: 10.1111/prd.12002
Kany, S., Vollrath, J. T. & Relja, B. Cytokines in inflammatory disease. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20236008 (2019).
doi: 10.3390/ijms20236008
pubmed: 31795299
pmcid: 6929211
Shao, M. Y., Huang, P., Cheng, R. & Hu, T. Interleukin-6 polymorphisms modify the risk of periodontitis: A systematic review and meta-analysis. J. Zhejiang Univ. Sci. B 10, 920–927. https://doi.org/10.1631/jzus.B0920279 (2009).
doi: 10.1631/jzus.B0920279
pubmed: 19946956
pmcid: 2789527
Otterbein, L. E. & Choi, A. M. Heme oxygenase: Colors of defense against cellular stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L1029-1037. https://doi.org/10.1152/ajplung.2000.279.6.L1029 (2000).
doi: 10.1152/ajplung.2000.279.6.L1029
pubmed: 11076792
Hienz, S. A., Paliwal, S. & Ivanovski, S. Mechanisms of bone resorption in periodontitis. J. Immunol. Res. 2015, 615486. https://doi.org/10.1155/2015/615486 (2015).
doi: 10.1155/2015/615486
pubmed: 26065002
pmcid: 4433701
Kearns, A. E., Khosla, S. & Kostenuik, P. J. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr. Rev. 29, 155–192. https://doi.org/10.1210/er.2007-0014 (2008).
doi: 10.1210/er.2007-0014
pubmed: 18057140
Yang, L. C. et al. Lactobacillus plantarum GKM3 and Lactobacillus paracasei GKS6 supplementation ameliorates bone loss in ovariectomized mice by promoting osteoblast differentiation and inhibiting osteoclast formation. Nutrients https://doi.org/10.3390/nu12071914 (2020).
doi: 10.3390/nu12071914
pubmed: 33353102
pmcid: 7767216
Tanaka, Y., Nakayamada, S. & Okada, Y. Osteoblasts and osteoclasts in bone remodeling and inflammation. Curr. Drug Targets Inflamm. Allergy 4, 325–328. https://doi.org/10.2174/1568010054022015 (2005).
doi: 10.2174/1568010054022015
pubmed: 16101541
Karki, S. et al. Quantification of major compounds from Ixeris dentata, Ixeris dentata Var. albiflora, and Ixeris sonchifolia and their comparative anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 cells. J. Med. Food 18, 83–94. https://doi.org/10.1089/jmf.2014.3205 (2015).
doi: 10.1089/jmf.2014.3205
pubmed: 25383596
Kim, M.-J., Kim, J.-S., Kang, W.-H. & Jeong, D.-M. Effect on antimutagenic and cancer cell growth inhibition of Ixeris dentata Nakai. Korean J. Med. Crop Sci. 10, 139–143 (2002).
Oh, S. H., Sung, T. H. & Kim, M. R. Ixeris dentata extract maintains glutathione concentrations in mouse brain tissue under oxidative stress induced by kainic acid. J. Med. Food 6, 353–358. https://doi.org/10.1089/109662003772519912 (2003).
doi: 10.1089/109662003772519912
pubmed: 14977444
Park, E. K. et al. Lactic acid bacterial fermentation increases the antiallergic effects of Ixeris dentata. J. Microbiol. Biotechnol. 18, 308–313 (2008).
pubmed: 18309276
Boesing, F., Patino, J. S., da Silva, V. R. & Moreira, E. A. The interface between obesity and periodontitis with emphasis on oxidative stress and inflammatory response. Obes. Rev. 10, 290–297. https://doi.org/10.1111/j.1467-789X.2008.00555.x (2009).
doi: 10.1111/j.1467-789X.2008.00555.x
pubmed: 19207875
Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A. & Colombo, R. Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta 329, 23–38. https://doi.org/10.1016/s0009-8981(03)00003-2 (2003).
doi: 10.1016/s0009-8981(03)00003-2
pubmed: 12589963
Luo, X., Wan, Q., Cheng, L. & Xu, R. Mechanisms of bone remodeling and therapeutic strategies in chronic apical periodontitis. Front. Cell. Infect. Microbiol. 12, 908859. https://doi.org/10.3389/fcimb.2022.908859 (2022).
doi: 10.3389/fcimb.2022.908859
pubmed: 35937695
pmcid: 9353524
Deng, W. et al. Dendrobine attenuates osteoclast differentiation through modulating ROS/NFATc1/ MMP9 pathway and prevents inflammatory bone destruction. Phytomedicine 96, 153838. https://doi.org/10.1016/j.phymed.2021.153838 (2022).
doi: 10.1016/j.phymed.2021.153838
pubmed: 34801352
Chen, X. et al. Osteoblast-osteoclast interactions. Connect. Tissue Res. 59, 99–107. https://doi.org/10.1080/03008207.2017.1290085 (2018).
doi: 10.1080/03008207.2017.1290085
pubmed: 28324674
Lee, H. Y., Gu, M., Cheng, J., Suh, J. W. & Chae, H. J. Ixeris dentata and Lactobacillus gasseri extracts improve salivary secretion capability in diabetes-associated dry mouth rat model. Nutrients https://doi.org/10.3390/nu12051331 (2020).
doi: 10.3390/nu12051331
pubmed: 33375705
pmcid: 7824385
Assuma, R., Oates, T., Cochran, D., Amar, S. & Graves, D. T. IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J. Immunol. 160, 403–409 (1998).
doi: 10.4049/jimmunol.160.1.403
pubmed: 9551997
Bezerra, M. M. et al. Selective cyclooxygenase-2 inhibition prevents alveolar bone loss in experimental periodontitis in rats. J. Periodontol. 71, 1009–1014. https://doi.org/10.1902/jop.2000.71.6.1009 (2000).
doi: 10.1902/jop.2000.71.6.1009
pubmed: 10914805
Chapple, I. L. & Matthews, J. B. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontology 2000(43), 160–232. https://doi.org/10.1111/j.1600-0757.2006.00178.x (2007).
doi: 10.1111/j.1600-0757.2006.00178.x
Ryu, E. Y. et al. Anti-inflammatory effect of heme oxygenase-1 toward Porphyromonas gingivalis lipopolysaccharide in macrophages exposed to gomisins A, G, and J. J. Med. Food 14, 1519–1526. https://doi.org/10.1089/jmf.2011.1656 (2011).
doi: 10.1089/jmf.2011.1656
pubmed: 22145771
pmcid: 3229186
Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 40, 1769–1777. https://doi.org/10.1177/0271678X20943823 (2020).
doi: 10.1177/0271678X20943823
pubmed: 32663096
pmcid: 7430098
Yuh, D. Y. et al. The secreted protein DEL-1 activates a beta3 integrin-FAK-ERK1/2-RUNX2 pathway and promotes osteogenic differentiation and bone regeneration. J. Biol. Chem. 295, 7261–7273. https://doi.org/10.1074/jbc.RA120.013024 (2020).
doi: 10.1074/jbc.RA120.013024
pubmed: 32280065
pmcid: 7247308
Gu, M., Cheng, J., Lee, Y. G., Cho, J. H. & Suh, J. W. Discovery of novel iminosugar compounds produced by Lactobacillus paragasseri MJM60645 and their anti-biofilm activity against Streptococcus mutans. Microbiol. Spectr. 10, e0112222. https://doi.org/10.1128/spectrum.01122-22 (2022).
doi: 10.1128/spectrum.01122-22
pubmed: 35863019
Lee, G. H. et al. Anthocyanins attenuate endothelial dysfunction through regulation of uncoupling of nitric oxide synthase in aged rats. Aging Cell 19, e13279. https://doi.org/10.1111/acel.13279 (2020).
doi: 10.1111/acel.13279
pubmed: 33274583
pmcid: 7744959
Zito, E., Hansen, H. G., Yeo, G. S., Fujii, J. & Ron, D. Endoplasmic reticulum thiol oxidase deficiency leads to ascorbic acid depletion and noncanonical scurvy in mice. Mol. Cell 48, 39–51. https://doi.org/10.1016/j.molcel.2012.08.010 (2012).
doi: 10.1016/j.molcel.2012.08.010
pubmed: 22981861
pmcid: 3473360
De Leon, J. A. D. & Borges, C. R. Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. J. Vis. Exp. https://doi.org/10.3791/61122 (2020).
doi: 10.3791/61122
pubmed: 32744523