Regulatory changes associated with the head to trunk developmental transition.


Journal

BMC biology
ISSN: 1741-7007
Titre abrégé: BMC Biol
Pays: England
ID NLM: 101190720

Informations de publication

Date de publication:
08 08 2023
Historique:
received: 03 01 2023
accepted: 03 08 2023
medline: 10 8 2023
pubmed: 9 8 2023
entrez: 8 8 2023
Statut: epublish

Résumé

Development of vertebrate embryos is characterized by early formation of the anterior tissues followed by the sequential extension of the axis at their posterior end to build the trunk and tail structures, first by the activity of the primitive streak and then of the tail bud. Embryological, molecular and genetic data indicate that head and trunk development are significantly different, suggesting that the transition into the trunk formation stage involves major changes in regulatory gene networks. We explored those regulatory changes by generating differential interaction networks and chromatin accessibility profiles from the posterior epiblast region of mouse embryos at embryonic day (E)7.5 and E8.5. We observed changes in various cell processes, including several signaling pathways, ubiquitination machinery, ion dynamics and metabolic processes involving lipids that could contribute to the functional switch in the progenitor region of the embryo. We further explored the functional impact of changes observed in Wnt signaling associated processes, revealing a switch in the functional relevance of Wnt molecule palmitoleoylation, essential during gastrulation but becoming differentially required for the control of axial extension and progenitor differentiation processes during trunk formation. We also found substantial changes in chromatin accessibility at the two developmental stages, mostly mapping to intergenic regions and presenting differential footprinting profiles to several key transcription factors, indicating a significant switch in the regulatory elements controlling head or trunk development. Those chromatin changes are largely independent of retinoic acid, despite the key role of this factor in the transition to trunk development. We also tested the functional relevance of potential enhancers identified in the accessibility assays that reproduced the expression profiles of genes involved in the transition. Deletion of these regions by genome editing had limited effect on the expression of those genes, suggesting the existence of redundant enhancers that guarantee robust expression patterns. This work provides a global view of the regulatory changes controlling the switch into the axial extension phase of vertebrate embryonic development. It also revealed mechanisms by which the cellular context influences the activity of regulatory factors, channeling them to implement one of several possible biological outputs.

Sections du résumé

BACKGROUND
Development of vertebrate embryos is characterized by early formation of the anterior tissues followed by the sequential extension of the axis at their posterior end to build the trunk and tail structures, first by the activity of the primitive streak and then of the tail bud. Embryological, molecular and genetic data indicate that head and trunk development are significantly different, suggesting that the transition into the trunk formation stage involves major changes in regulatory gene networks.
RESULTS
We explored those regulatory changes by generating differential interaction networks and chromatin accessibility profiles from the posterior epiblast region of mouse embryos at embryonic day (E)7.5 and E8.5. We observed changes in various cell processes, including several signaling pathways, ubiquitination machinery, ion dynamics and metabolic processes involving lipids that could contribute to the functional switch in the progenitor region of the embryo. We further explored the functional impact of changes observed in Wnt signaling associated processes, revealing a switch in the functional relevance of Wnt molecule palmitoleoylation, essential during gastrulation but becoming differentially required for the control of axial extension and progenitor differentiation processes during trunk formation. We also found substantial changes in chromatin accessibility at the two developmental stages, mostly mapping to intergenic regions and presenting differential footprinting profiles to several key transcription factors, indicating a significant switch in the regulatory elements controlling head or trunk development. Those chromatin changes are largely independent of retinoic acid, despite the key role of this factor in the transition to trunk development. We also tested the functional relevance of potential enhancers identified in the accessibility assays that reproduced the expression profiles of genes involved in the transition. Deletion of these regions by genome editing had limited effect on the expression of those genes, suggesting the existence of redundant enhancers that guarantee robust expression patterns.
CONCLUSIONS
This work provides a global view of the regulatory changes controlling the switch into the axial extension phase of vertebrate embryonic development. It also revealed mechanisms by which the cellular context influences the activity of regulatory factors, channeling them to implement one of several possible biological outputs.

Identifiants

pubmed: 37553620
doi: 10.1186/s12915-023-01675-2
pii: 10.1186/s12915-023-01675-2
pmc: PMC10408190
doi:

Substances chimiques

Transcription Factors 0
Chromatin 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

170

Subventions

Organisme : NLM NIH HHS
ID : R01 LM011945
Pays : United States

Informations de copyright

© 2023. BioMed Central Ltd., part of Springer Nature.

Références

Curr Opin Cell Biol. 2018 Dec;55:81-86
pubmed: 30015151
Dev Cell. 2013 Jun 10;25(5):451-62
pubmed: 23763947
Mech Dev. 1997 Nov;68(1-2):3-25
pubmed: 9431800
Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1774-8
pubmed: 7878058
J Biol Chem. 2014 Jun 13;289(24):17009-19
pubmed: 24798332
Nat Protoc. 2014 Jan;9(1):171-81
pubmed: 24385147
Development. 2015 Apr 15;142(8):1516-27
pubmed: 25813538
Nature. 2018 Feb 8;554(7691):239-243
pubmed: 29420474
Genome Biol. 2019 Feb 26;20(1):45
pubmed: 30808370
Sci Rep. 2020 Jun 16;10(1):9695
pubmed: 32546756
Curr Biol. 2009 Jun 23;19(12):1050-7
pubmed: 19464179
Dev Cell. 2003 Feb;4(2):191-204
pubmed: 12586063
Genes Dev. 1999 Feb 1;13(3):270-83
pubmed: 9990852
Cell. 2021 Apr 15;184(8):1971-1989
pubmed: 33826908
J Biol Chem. 2021 Jan-Jun;296:100189
pubmed: 33334884
PLoS Biol. 2020 May 18;18(5):e3000719
pubmed: 32421711
Development. 2006 Mar;133(6):989-99
pubmed: 16467359
Nature. 1997 Nov 27;390(6658):410-3
pubmed: 9389482
Cell Rep. 2016 Dec 20;17(12):3165-3177
pubmed: 28009287
Science. 2006 Oct 20;314(5798):467-71
pubmed: 17053147
J Biol Chem. 2016 Jun 24;291(26):13730-42
pubmed: 27129770
Curr Opin Cell Biol. 2021 Dec;73:133-140
pubmed: 34717142
EMBO J. 2011 Jan 19;30(2):237-48
pubmed: 21151097
Cell. 2013 May 9;153(4):910-8
pubmed: 23643243
Cell Signal. 2011 May;23(5):837-48
pubmed: 21244856
Development. 2016 Feb 1;143(3):437-48
pubmed: 26718008
Nature. 2004 Jan 8;427(6970):121-8
pubmed: 14712268
Nature. 1990 Feb 15;343(6259):617-22
pubmed: 2154694
Dev Dyn. 2022 Oct;251(10):1698-1710
pubmed: 35618666
Genome Biol. 2014;15(12):550
pubmed: 25516281
Dev Biol. 1997 Mar 15;183(2):234-42
pubmed: 9126297
Autophagy. 2022 Jan;18(1):4-23
pubmed: 33657975
Int J Dev Biol. 2006;50(1):3-15
pubmed: 16323073
Cell. 2002 Oct 4;111(1):77-89
pubmed: 12372302
Physiol Rev. 2012 Oct;92(4):1865-913
pubmed: 23073633
Nature. 2019 Feb;566(7745):490-495
pubmed: 30787436
Development. 1999 Mar;126(6):1211-23
pubmed: 10021340
Cell Rep. 2018 Jun 12;23(11):3146-3151
pubmed: 29898387
Curr Biol. 2010 Sep 14;20(17):1562-7
pubmed: 20797865
Nat Genet. 2000 May;25(1):25-9
pubmed: 10802651
Development. 2014 Nov;141(22):4285-97
pubmed: 25371364
Philos Trans R Soc Lond B Biol Sci. 1981 Oct 7;295(1078):553-66
pubmed: 6117911
Development. 2011 Apr;138(7):1361-70
pubmed: 21350009
Genes Dev. 1994 Jan;8(2):174-89
pubmed: 8299937
Curr Opin Cell Biol. 2019 Dec;61:110-116
pubmed: 31476530
Dev Biol. 2017 Dec 1;432(1):3-13
pubmed: 28192080
Development. 1991 Apr;111(4):969-81
pubmed: 1879365
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13570-5
pubmed: 21825127
Dev Cell. 2006 Dec;11(6):791-801
pubmed: 17141155
Genome Biol. 2018 Oct 4;19(1):151
pubmed: 30286773
PLoS Genet. 2013 Nov;9(11):e1003957
pubmed: 24244203
Dev Cell. 2007 Dec;13(6):897-907
pubmed: 18061570
EMBO J. 1999 May 4;18(9):2401-10
pubmed: 10228155
Cell. 1998 Oct 30;95(3):379-91
pubmed: 9814708
Front Genet. 2018 Jul 17;9:250
pubmed: 30065749
Dev Cell. 2010 Apr 20;18(4):655-61
pubmed: 20412779
Mech Dev. 2001 Jul;105(1-2):181-4
pubmed: 11429295
Nat Genet. 1999 Apr;21(4):444-8
pubmed: 10192400
Nucleic Acids Res. 2018 Jan 4;46(D1):D252-D259
pubmed: 29140464
Dev Biol. 2011 Jul 15;355(2):275-85
pubmed: 21554866
Dev Cell. 2023 Sep 25;58(18):1627-1642.e7
pubmed: 37633271
Neuron. 2003 Aug 28;39(5):749-65
pubmed: 12948443
Annu Rev Biochem. 2017 Jun 20;86:129-157
pubmed: 28375744
Cell. 2003 May 30;113(5):631-42
pubmed: 12787504
Nature. 2005 May 5;435(7038):58-65
pubmed: 15875013
Dev Biol. 2008 May 15;317(2):614-9
pubmed: 18400219
Genome Res. 2002 Jun;12(6):996-1006
pubmed: 12045153
Nature. 2010 Jul 22;466(7305):490-3
pubmed: 20512118
Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613
pubmed: 30476243
Elife. 2016 Jan 18;5:e10042
pubmed: 26780186
J Biol Chem. 2019 Dec 27;294(52):19950-19966
pubmed: 31740580
Nature. 2002 Aug 8;418(6898):636-41
pubmed: 12167861
Curr Biol. 2016 May 9;26(9):1164-9
pubmed: 27112292
Dev Cell. 2019 Feb 11;48(3):383-395.e8
pubmed: 30661984
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Nat Commun. 2019 Apr 2;10(1):1498
pubmed: 30940800
BMC Biol. 2023 Aug 8;21(1):170
pubmed: 37553620
Cancer Res. 2005 Feb 15;65(4):1316-24
pubmed: 15735017
Nature. 1997 Mar 6;386(6620):84-7
pubmed: 9052785
Nat Biotechnol. 2011 Jan;29(1):24-6
pubmed: 21221095
PLoS Genet. 2016 Dec 5;12(12):e1006441
pubmed: 27918583
Nature. 2019 Dec;576(7787):487-491
pubmed: 31827285
Development. 2012 Mar;139(5):843-58
pubmed: 22318625
Elife. 2015 Aug 12;4:
pubmed: 26267217
Development. 2009 May;136(10):1591-604
pubmed: 19395637
Genes Dev. 2003 Jan 1;17(1):126-40
pubmed: 12514105
Curr Biol. 1999 Feb 25;9(4):207-10
pubmed: 10074433
Nucleic Acids Res. 2019 Jan 8;47(D1):D419-D426
pubmed: 30407594
Nat Genet. 1999 Aug;22(4):361-5
pubmed: 10431240
Development. 2008 Feb;135(3):501-11
pubmed: 18171685
Nat Methods. 2017 Oct;14(10):959-962
pubmed: 28846090
Dev Cell. 2016 Aug 8;38(3):262-74
pubmed: 27453501
Elife. 2020 Aug 17;9:
pubmed: 32804082
Genes Dev. 2016 May 15;30(10):1172-86
pubmed: 27198226
Nature. 1995 Oct 5;377(6548):451-4
pubmed: 7566126
Cell. 2017 Oct 19;171(3):557-572.e24
pubmed: 29053968
Genes Dev. 2000 Dec 15;14(24):3204-14
pubmed: 11124811
Development. 2021 Feb 16;148(4):
pubmed: 33593754
Front Physiol. 2013 Oct 29;4:312
pubmed: 24194722
EMBO J. 1991 Oct;10(10):2997-3005
pubmed: 1915274
Mech Dev. 2020 Sep;163:103617
pubmed: 32473204
Genome Res. 2010 Jan;20(1):110-21
pubmed: 19858363
Nature. 1997 Oct 30;389(6654):966-70
pubmed: 9353119
PLoS One. 2011;6(10):e26636
pubmed: 22046319
Proc Natl Acad Sci U S A. 2011 May 24;108(21):8692-7
pubmed: 21555575
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4044-51
pubmed: 22343533
Nature. 1998 Oct 15;395(6703):702-7
pubmed: 9790191

Auteurs

Patrícia Duarte (P)

Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.

Rion Brattig Correia (R)

Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.

Ana Nóvoa (A)

Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.

Moisés Mallo (M)

Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal. mallo@igc.gulbenkian.pt.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH