Manifold-aware synthesis of high-resolution diffusion from structural imaging.

3D IRM Riemannian geometry brain imaging diffusion synthesis manifold-valued data learning

Journal

Frontiers in neuroimaging
ISSN: 2813-1193
Titre abrégé: Front Neuroimaging
Pays: Switzerland
ID NLM: 9918402387106676

Informations de publication

Date de publication:
2022
Historique:
received: 28 04 2022
accepted: 16 08 2022
medline: 9 8 2023
pubmed: 9 8 2023
entrez: 9 8 2023
Statut: epublish

Résumé

The physical and clinical constraints surrounding diffusion-weighted imaging (DWI) often limit the spatial resolution of the produced images to voxels up to eight times larger than those of T1w images. The detailed information contained in accessible high-resolution T1w images could help in the synthesis of diffusion images with a greater level of detail. However, the non-Euclidean nature of diffusion imaging hinders current deep generative models from synthesizing physically plausible images. In this work, we propose the first Riemannian network architecture for the direct generation of diffusion tensors (DT) and diffusion orientation distribution functions (dODFs) from high-resolution T1w images. Our integration of the log-Euclidean Metric into a learning objective guarantees, unlike standard Euclidean networks, the mathematically-valid synthesis of diffusion. Furthermore, our approach improves the fractional anisotropy mean squared error (FA MSE) between the synthesized diffusion and the ground-truth by more than 23% and the cosine similarity between principal directions by almost 5% when compared to our baselines. We validate our generated diffusion by comparing the resulting tractograms to our expected real data. We observe similar fiber bundles with streamlines having <3% difference in length, <1% difference in volume, and a visually close shape. While our method is able to generate diffusion images from structural inputs in a high-resolution space within 15 s, we acknowledge and discuss the limits of diffusion inference solely relying on T1w images. Our results nonetheless suggest a relationship between the high-level geometry of the brain and its overall white matter architecture that remains to be explored.

Identifiants

pubmed: 37555146
doi: 10.3389/fnimg.2022.930496
pmc: PMC10406190
doi:

Types de publication

Journal Article

Langues

eng

Pagination

930496

Informations de copyright

Copyright © 2022 Anctil-Robitaille, Théberge, Jodoin, Descoteaux, Desrosiers and Lombaert.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Magn Reson Med. 2010 Aug;64(2):554-66
pubmed: 20535807
Biomed Eng Online. 2020 Jan 15;19(1):4
pubmed: 31941515
Comput Biol Med. 2019 Dec;115:103528
pubmed: 31743880
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):911-8
pubmed: 20426075
Neuroimage. 2014 Jan 1;84:939-50
pubmed: 24060317
Magn Reson Med. 2013 Jan;69(1):103-13
pubmed: 22411778
Neuroimage. 2017 May 15;152:283-298
pubmed: 28263925
Neuroimage. 2013 Oct 15;80:125-43
pubmed: 23702418
Hum Brain Mapp. 2020 May;41(7):1859-1874
pubmed: 31925871
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:2830-2834
pubmed: 31946482
NMR Biomed. 2019 Apr;32(4):e3785
pubmed: 28945294
Neuroimage. 2014 Dec;103:202-213
pubmed: 25219332
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16574-9
pubmed: 25368179
AJNR Am J Neuroradiol. 2007 Nov-Dec;28(10):1943-8
pubmed: 17905894
Magn Reson Med. 2001 May;45(5):770-80
pubmed: 11323803
Neuroimage. 2013 Oct 15;80:105-24
pubmed: 23668970
Neuroimage. 2013 Oct 15;80:62-79
pubmed: 23684880
Magn Reson Med. 2006 Aug;56(2):411-21
pubmed: 16788917
Mol Psychiatry. 2018 May;23(5):1261-1269
pubmed: 29038599
Neuroimage. 2019 Nov 15;202:116137
pubmed: 31473352
Magn Reson Med. 2004 Dec;52(6):1358-72
pubmed: 15562495
Front Oncol. 2019 May 29;9:426
pubmed: 31192130
Front Neuroinform. 2014 Feb 21;8:8
pubmed: 24600385
Neurobiol Aging. 2017 Aug;56:172-179
pubmed: 28552181
Magn Reson Med. 2021 Sep;86(3):1718-1733
pubmed: 33961321
Magn Reson Med. 2004 Sep;52(3):559-65
pubmed: 15334575
Neuroimage. 2018 Sep;178:57-68
pubmed: 29758339
AJNR Am J Neuroradiol. 2007 Jun-Jul;28(6):1102-6
pubmed: 17569968
J Neurosurg. 2013 Jun;118(6):1367-77
pubmed: 23540269
Comput Methods Programs Biomed. 2006 Feb;81(2):106-16
pubmed: 16413083
Neuroimage. 2020 Sep;218:116889
pubmed: 32447016
Neuroimage. 2010 Jul 1;51(3):1184-93
pubmed: 20188196
IEEE Trans Med Imaging. 2019 Oct;38(10):2375-2388
pubmed: 30835216
Neuroimage. 2021 Nov;243:118502
pubmed: 34433094
Neuroimage. 2018 Apr 15;170:283-295
pubmed: 28712994
Magn Reson Med. 2007 Sep;58(3):497-510
pubmed: 17763358
Med Phys. 2019 Aug;46(8):3565-3581
pubmed: 31112304
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2007 Jul 16;2007(17-22 June 2007):1-7
pubmed: 21311729
AJNR Am J Neuroradiol. 2009 Jun;30(6):1222-6
pubmed: 19342541

Auteurs

Benoit Anctil-Robitaille (B)

The Shape Lab, Department of Computer and Software Engineering, ETS Montreal, Montreal, QC, Canada.

Antoine Théberge (A)

Sherbrooke Connectivity Imaging Laboratory (SCIL), Department of Computer Science, Sherbrooke University, Sherbrooke, QC, Canada.

Pierre-Marc Jodoin (PM)

Sherbrooke Connectivity Imaging Laboratory (SCIL), Department of Computer Science, Sherbrooke University, Sherbrooke, QC, Canada.

Maxime Descoteaux (M)

Sherbrooke Connectivity Imaging Laboratory (SCIL), Department of Computer Science, Sherbrooke University, Sherbrooke, QC, Canada.

Christian Desrosiers (C)

The Shape Lab, Department of Computer and Software Engineering, ETS Montreal, Montreal, QC, Canada.

Hervé Lombaert (H)

The Shape Lab, Department of Computer and Software Engineering, ETS Montreal, Montreal, QC, Canada.

Classifications MeSH