Equilibration of precipitants in a counter-diffusion apparatus for protein crystallization.
diffusion
large-volume crystals
microgravity
protein crystallization
Journal
Journal of applied crystallography
ISSN: 0021-8898
Titre abrégé: J Appl Crystallogr
Pays: United States
ID NLM: 9876190
Informations de publication
Date de publication:
01 Aug 2023
01 Aug 2023
Historique:
received:
26
02
2023
accepted:
05
06
2023
medline:
9
8
2023
pubmed:
9
8
2023
entrez:
9
8
2023
Statut:
epublish
Résumé
A cost-effective capillary dialysis apparatus (Toledo Capillary Box, TCB) developed for biomacromolecule crystal growth in microgravity and unit gravity environments can provide slow equilibration between the precipitant reservoir and capillary solutions, nurturing growth of neutron-diffraction-quality crystals. Under microgravity conditions, mass transfer of precipitants and biomacro-mol-ecules occurs under diffusion-controlled conditions, promoting slow growth and suppressing defect formation. The equilibration of common precipitants (polyethyl-ene glycol and salts such as ammonium sulfate) between capillary and reservoir solutions was measured for capillaries oriented horizontally or vertically with respect to the gravitational field at unit gravity. Precipitants equilibrated less rapidly in the vertical orientation when capillary solution densities were lower than those of the reservoir solutions. A plug filled with agarose gel was introduced in the TCB apparatus for salt precipitants since salts often exhibit relatively high free diffusion. Equilibration of the capillaries with reservoir solutions was significantly delayed for many of the salt precipitants tested. Analytical and semi-analytical models allow the prediction of precipitant equilibration of capillary and reservoir solutions under diffusion-controlled transport and show good agreement with experimental results.
Identifiants
pubmed: 37555216
doi: 10.1107/S1600576723004958
pii: S1600576723004958
pmc: PMC10405592
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1057-1065Informations de copyright
© Umberto A. Kober et al. 2023.
Références
Methods. 2004 Nov;34(3):254-65
pubmed: 15325645
J Phys Chem Lett. 2019 Mar 7;10(5):987-992
pubmed: 30768907
Curr Opin Struct Biol. 2008 Oct;18(5):593-600
pubmed: 18656544
Arch Biochem Biophys. 2016 Jul 15;602:3-11
pubmed: 26747744
Curr Opin Struct Biol. 2021 Dec;71:36-42
pubmed: 34214927
Acta Crystallogr D Biol Crystallogr. 2002 Oct;58(Pt 10 Pt 1):1628-32
pubmed: 12351875
Acta Crystallogr D Biol Crystallogr. 1999 Feb;55(Pt 2):577-80
pubmed: 10089385
Acta Crystallogr F Struct Biol Commun. 2016 Feb;72(Pt 2):96-104
pubmed: 26841759
Methods Enzymol. 2003;368:130-54
pubmed: 14674272
Biophys J. 2004 May;86(5):2710-9
pubmed: 15111390
Methods Enzymol. 2020;634:1-19
pubmed: 32093828
J Phys Chem A. 2012 Jun 28;116(25):6505-10
pubmed: 22394244
Prog Biophys Mol Biol. 2009 Nov;101(1-3):26-37
pubmed: 20018206
Environ Sci Technol. 2003 Feb 1;37(3):482-7
pubmed: 12630462
Anal Chim Acta. 2016 Nov 16;945:47-56
pubmed: 27968715
Protein Eng Des Sel. 2014 Feb;27(2):59-64
pubmed: 24402330
J Synchrotron Radiat. 2004 Jan 1;11(Pt 1):45-8
pubmed: 14646131
Biophys J. 1995 Apr;68(4):1561-8
pubmed: 7787041
Acta Crystallogr F Struct Biol Commun. 2015 Apr;71(Pt 4):358-70
pubmed: 25849493
NPJ Microgravity. 2022 May 4;8(1):13
pubmed: 35508463
Bull Chem Soc Jpn. 1967 Jun;40(6):1452-6
pubmed: 6063123
NPJ Microgravity. 2015 Sep 03;1:15010
pubmed: 28725714