A distinctive latitudinal trend of nitrogen isotope signature across urban forests in eastern China.
latitudinal trend
leaf δ15N
nitrogen availability
nitrogen deposition
topsoil C:N ratio
topsoil δ15N
Journal
Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
revised:
19
07
2023
received:
26
03
2023
accepted:
20
07
2023
medline:
7
9
2023
pubmed:
9
8
2023
entrez:
9
8
2023
Statut:
ppublish
Résumé
Rapid urbanization has greatly altered nitrogen (N) cycling from regional to global scales. Compared to natural forests, urban forests receive much more external N inputs with distinctive abundances of stable N isotope (δ
Substances chimiques
Nitrogen Isotopes
0
Nitrogen
N762921K75
Soil
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5666-5676Subventions
Organisme : Fundamental Research Funds for the Central Universities
Organisme : National Natural Science Foundation of China
ID : 41877328
Organisme : State Key Laboratory of Earth Surface Processes and Resource Ecology
ID : 2021-TS-02
Organisme : Fok Ying-Tong Education Foundation
ID : 161015
Informations de copyright
© 2023 John Wiley & Sons Ltd.
Références
Ackerman, D., Millet, D. B., & Chen, X. (2019). Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles, 33(1), 100-107. https://doi.org/10.1029/2018gb005990
Amundson, R., Austin, A. T., Schuur, E. A., Yoo, K., Matzek, V., Kendall, C., Uebersax, A., Brenner, D., & Baisden, W. T. (2003). Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles, 17, 1031. https://doi.org/10.1029/2002gb001903
Andrade, J. M., & Estévez-Pérez, M. G. (2014). Statistical comparison of the slopes of two regression lines: A tutorial. Analytica Chimica Acta, 838, 1-12. https://doi.org/10.1016/j.aca.2014.04.057
Brenner, D. L., Amundson, R., Baisden, W. T., Kendall, C., & Harden, J. (2001). Soil N and 15N variation with time in a California annual grassland ecosystem. Geochimica et Cosmochimica Acta, 65(22), 4171-4186. https://doi.org/10.1016/s0016-7037(01)00699-8
Brundrett, M. C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 320, 37-77. https://doi.org/10.1007/s11104-008-9877-9
Bytnerowicz, T. A., Akana, P. R., Griffin, K. L., & Menge, D. N. (2022). Temperature sensitivity of woody nitrogen fixation across species and growing temperatures. Nature Plants, 8(3), 209-216. https://doi.org/10.1038/s41477-021-01090-x
Cameron, K. C., Di, H. J., & Moir, J. L. (2013). Nitrogen losses from the soil/plant system: A review. Annals of Applied Biology, 162(2), 145-173. https://doi.org/10.1111/aab.12014
Caron, S., Garvey, S. M., Gewirtzman, J., Schultz, K., Bhatnagar, J. M., Driscoll, C., Hutyra, L. R., & Templer, P. H. (2023). Urbanization and fragmentation have opposing effects on soil nitrogen availability in temperate forest ecosystems. Global Change Biology, 29(8), 2156-2171. https://doi.org/10.1111/gcb.16611
Chang, Y., Liu, X., Deng, C., Dore, A. J., & Zhuang, G. (2016). Source apportionment of atmospheric ammonia before, during, and after the 2014 APEC summit in Beijing using stable nitrogen isotope signatures. Atmospheric Chemistry and Physics, 16(18), 11635-11647. https://doi.org/10.5194/acp-16-11635-2016
Chen, Q., Chen, J., Andersen, M. N., & Cheng, X. (2022). Elevational shifts in foliar-soil δ15N in the Hengduan Mountains and different potential mechanisms. Global Change Biology, 28(18), 5480-5491. https://doi.org/10.1111/gcb.16306
Cobley, L. A. E., & Pataki, D. E. (2019). Vehicle emissions and fertilizer impact the leaf chemistry of urban trees in salt Lake Valley, UT. Environmental Pollution, 254, 112984. https://doi.org/10.1016/j.envpol.2019.112984
Craine, J. M., Brookshire, E. N. J., Cramer, M. D., Hasselquist, N. J., Koba, K., Marin-Spiotta, E., & Wang, L. (2015). Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant and Soil, 396(1), 1-26. https://doi.org/10.1007/s11104-015-2542-1
Craine, J. M., Elmore, A. J., Aidar, M. P., Bustamante, M., Dawson, T. E., Hobbie, E. A., Kahmen, A., Mack, M. C., McLauchlan, K. K., Michelsen, A., Nardoto, G. B., Pardo, L. H., Peñuelas, J., Reich, P. B., Schuur, E. A. G., Stock, W. D., Templer, P. H., Virginia, R. A., Welker, J. M., & Wright, I. J. (2009). Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist, 183(4), 980-992. https://doi.org/10.1111/j.1469-8137.2009.02917.x
Craine, J. M., Elmore, A. J., Wang, L., Aranibar, J., Bauters, M., Boeckx, P., Crowley, B. E., Dawes, M. A., Delzon, S., Fajardo, A., Fang, Y., Fujiyoshi, L., Gray, A., Guerrieri, R., Gundale, M. J., Hawke, D. J., Hietz, P., Jonard, M., Kearsley, E., … Zmudczyńska-Skarbek, K. (2018). Isotopic evidence for oligotrophication of terrestrial ecosystems. Nature Ecology & Evolution, 2(11), 1735-1744. https://doi.org/10.1038/s41559-018-0694-0
Craine, J. M., Elmore, A. J., Wang, L., Augusto, L., Baisden, W. T., Brookshire, E. J., Carmer, M. D., Hasselquist, N. J., Hobbie, E. A., Kahmen, A., Koba, K., Kranabetter, M., Mack, M. C., Marin-Spiotta, E., Mayor, J. R., McLauchlan, K. K., Michelsen, A., Nardoto, G. B., Oliveira, R. S., … Zeller, B. (2015). Convergence of soil nitrogen isotopes across global climate gradients. Scientific Reports, 5(1), 1-8. https://doi.org/10.1038/srep08280
Decina, S. M., Hutyra, L. R., & Templer, P. H. (2020). Hotspots of nitrogen deposition in the world's urban areas: A global data synthesis. Frontiers in Ecology and the Environment, 18(2), 92-100. https://doi.org/10.1002/fee.2143
Decina, S. M., Templer, P. H., & Hutyra, L. R. (2018). Atmospheric inputs of nitrogen, carbon, and phosphorus across an urban area: Unaccounted fluxes and canopy influences. Earth's Future, 6(2), 134-148. https://doi.org/10.1002/2017ef000653
Denk, T. R., Mohn, J., Decock, C., Lewicka-Szczebak, D., Harris, E., Butterbach-Bahl, K., Kiese, R., & Wolf, B. (2017). The nitrogen cycle: A review of isotope effects and isotope modeling approaches. Soil Biology and Biochemistry, 105, 121-137. https://doi.org/10.1016/j.soilbio.2016.11.015
Department of Urban Surveys, & National Bureau of Statistics of China. (2020). China city statistical yearbook 2020. China Statistics Press.
Du, E., Fenn, M. E., de Vries, W., & Ok, Y. S. (2019). Atmospheric nitrogen deposition to global forests: Status, impacts and management options. Environmental Pollution, 250, 1044-1048. https://doi.org/10.1016/j.envpol.2019.04.014
Du, E., Terrer, C., Pellegrini, A. F., Ahlström, A., van Lissa, C. J., Zhao, X., Xia, N., Wu, X., & Jackson, R. B. (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13(3), 221-226. https://doi.org/10.1038/s41561-019-0530-4
Du, E., Xia, N., Guo, Y., Tian, Y., Li, B., Liu, X., & de Vries, W. (2022). Ecological effects of nitrogen deposition on urban forests: An overview. Frontiers of Agricultural Science and Engineering, 9(3), 445-456. https://doi.org/10.15302/j-fase-2021429
Du, E., Xia, N., Tang, Y., Guo, Z., Guo, Y., Wang, Y., & de Vries, W. (2022). Anthropogenic and climatic shaping of soil nitrogen properties across urban-rural-natural forests in the Beijing metropolitan region. Geoderma, 406, 115524. https://doi.org/10.1016/j.geoderma.2021.115524
Elliott, E. M., Yu, Z., Cole, A. S., & Coughlin, J. G. (2019). Isotopic advances in understanding reactive nitrogen deposition and atmospheric processing. Science of the Total Environment, 662, 393-403. https://doi.org/10.1016/j.scitotenv.2018.12.177
Fang, Y., Koba, K., Yoh, M., Makabe, A., & Liu, X. (2013). Patterns of foliar δ15N and their control in eastern Asian forests. Ecological Research, 28(5), 735-748. https://doi.org/10.1007/s11284-012-0934-8
Fang, Y., Yoh, M., Koba, K., Zhu, W., Takebayashi, Y. U., Xiao, Y., Lei, C., Mo, J., Zhang, W., & Lu, X. (2011). Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China. Global Change Biology, 17(2), 872-885. https://doi.org/10.1111/j.1365-2486.2010.02283.x
Feng, M., Peng, S., Wang, Y., Ciais, P., Goll, D. S., Chang, J., Fang, Y., Houlton, B. Z., Liu, G., Sun, Y., & Xi, Y. (2023). Overestimated nitrogen loss from denitrification for natural terrestrial ecosystems in CMIP6 Earth System Models. Nature Communications, 14(1), 3065. https://doi.org/10.1038/s41467-023-38803-z
Franche, C., Lindstrm, K., & Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321(1-2), 35-59. https://doi.org/10.1007/s11104-008-9833-8
Gong, P., Li, X., & Zhang, W. (2019). 40-year (1978-2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Science Bulletin, 64(11), 756-763. https://doi.org/10.1016/j.scib.2019.04.024
Groffman, P. M., Driscoll, C. T., Durán, J., Campbell, J. L., Christenson, L. M., Fahey, T. J., Fisk, M. C., Fuss, C., Likens, G. E., Lovett, G., Rustad, L., & Templer, P. H. (2018). Nitrogen oligotrophication in northern hardwood forests. Biogeochemistry, 141, 523-539. https://doi.org/10.1007/s10533-018-0445-y
Gu, M., Pan, Y., Sun, Q., Walters, W. W., Song, L., & Fang, Y. (2022). Is fertilization the dominant source of ammonia in the urban atmosphere? Science of the Total Environment, 838, 155890. https://doi.org/10.1016/j.scitotenv.2022.155890
Gurmesa, G. A., Hobbie, E. A., Zhang, S., Wang, A., Zhu, F., Zhu, W., Koba, K., Yoh, M., Wang, C., Zhang, Q., & Fang, Y. (2022). Natural 15N abundance of ammonium and nitrate in soil profiles: New insights into forest ecosystem nitrogen saturation. Ecosphere, 13(3), e3998. https://doi.org/10.1002/ecs2.3998
Hietz, P., Duenisch, O., & Wanek, W. (2010). Long-term trends in nitrogen isotope composition and nitrogen concentration in Brazilian rainforest trees suggest changes in nitrogen cycle. Environmental Science and Technology, 44(4), 1191-1196. https://doi.org/10.1021/es901383g
Hietz, P., Turner, B. L., Wanek, W., Richter, A., Nock, C. A., & Wright, S. J. (2011). Long-term change in the nitrogen cycle of tropical forests. Science, 334(6056), 664-666. https://doi.org/10.1126/science.1211979
Hobbie, E. A., & Colpaert, J. V. (2003). Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytologist, 157(1), 115-126. https://doi.org/10.1046/j.1469-8137.2003.00657.x
Hobbie, E. A., & Högberg, P. (2012). Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytologist, 196(2), 367-382. https://doi.org/10.1111/j.1469-8137.2012.04300.x
Högberg, M. N., Högberg, P., & Myrold, D. D. (2007). Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia, 150, 590-601. https://doi.org/10.1007/s00442-006-0562-5
Houlton, B. Z., Marklein, A. R., & Bai, E. (2015). Representation of nitrogen in climate change forecasts. Nature Climate Change, 5(5), 398-401. https://doi.org/10.1038/nclimate2538
Houlton, B. Z., Sigman, D. M., Schuur, E. A., & Hedin, L. O. (2007). A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 8902-8906. https://doi.org/10.1073/pnas.0609935104
Houlton, B. Z., Wang, Y. P., Vitousek, P. M., & Field, C. B. (2008). A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 454(7202), 327-330. https://doi.org/10.1038/nature07028
Kaushal, S. S., McDowell, W. H., & Wollheim, W. M. (2014). Tracking evolution of urban biogeochemical cycles: Past, present, and future. Biogeochemistry, 121, 1-21. https://doi.org/10.1007/s10533-014-0014-y
Kaye, J. P., Groffman, P. M., Grimm, N. B., Baker, L. A., & Pouyat, R. V. (2006). A distinct urban biogeochemistry? Trends in Ecology and Evolution, 21(4), 192-199. https://doi.org/10.1016/j.tree.2005.12.006
Kim, S. (2015). ppcor: An R package for a fast calculation to semi-partial correlation coefficients. Communications for Statistical Applications and Methods, 22(6), 665-674. https://doi.org/10.5351/csam.2015.22.6.665
Lai, J., Zou, Y., Zhang, J., & Peres-Neto, P. R. (2022). Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution, 13(4), 782-788. https://doi.org/10.1111/2041-210x.13800
Li, Z., Zeng, Z., Tian, D., Wang, J., Fu, Z., Zhang, F., Zhang, R., Chen, W., Luo, Y., & Niu, S. (2020). Global patterns and controlling factors of soil nitrification rate. Global Change Biology, 26(7), 4147-4157. https://doi.org/10.1111/gcb.15119
Liu, S., Lin, F., Wu, S., Ji, C., Sun, Y., Jin, Y., Li, S., Li, Z., & Zou, J. (2017). A meta-analysis of fertilizer-induced soil NO and combined NO + N2O emissions. Global Change Biology, 23(6), 2520-2532. https://doi.org/10.1111/gcb.13485
Liu, Y., Wang, C., He, N., Wen, X., Gao, Y., Li, S., Niu, S., Butterbach-Bahl, K., Luo, Y., & Yu, G. (2017). A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: Latitudinal patterns and mechanisms. Global Change Biology, 23(1), 455-464. https://doi.org/10.1111/gcb.13372
Martinelli, L. A., Piccolo, M. C., Townsend, A. R., Vitousek, P. M., Cuevas, E., McDowell, W., Robertson, G. P., Santos, O. C., & Treseder, K. (1999). Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests. Biogeochemistry, 46, 45-65. https://doi.org/10.1007/bf01007573
Mason, R. E., Craine, J. M., Lany, N. K., Jonard, M., Ollinger, S. V., Groffman, P. M., Fulweiler, R. W., Angerer, J., Read, Q. D., Reich, P. B., Templer, P. H., & Elmore, A. J. (2022). Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science, 376(6590), eabh3767. https://doi.org/10.1126/science.abh3767
Oksanen, J. (2010). Vegan: Community ecology package. https://cran.r-project.org/web/packages/vegan/index.html
Pereira, M. A. G., Domingos, M., da Silva, E. A., Aragaki, S., Ramon, M., de Camargo, P. B., & Ferreira, M. L. (2022). Isotopic composition (δ13C and δ15N) in the soil-plant system of subtropical urban forests. Science of the Total Environment, 851, 158052. https://doi.org/10.1016/j.scitotenv.2022.158052
Peri, P. L., Ladd, B., Pepper, D. A., Bonser, S. P., Laffan, S. W., & Amelung, W. (2012). Carbon (δ13C) and nitrogen (δ15N) stable isotope composition in plant and soil in southern Patagonia's native forests. Global Change Biology, 18(1), 311-321. https://doi.org/10.1111/j.1365-2486.2011.02494.x
Rivero-Villar, A., Ruiz-Suárez, G., Templer, P. H., Souza, V., & Campo, J. (2021). Nitrogen cycling in tropical dry forests is sensitive to changes in rainfall regime and nitrogen deposition. Biogeochemistry, 153, 283-302. https://doi.org/10.1007/s10533-021-00788-6
Robinson, D. (2001). δ15N as an integrator of the nitrogen cycle. Trends in Ecology and Evolution, 16(3), 153-162. https://doi.org/10.1016/s0169-5347(00)02098-x
Sayer, E. J. (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews, 81(1), 1-31. https://doi.org/10.1017/s1464793105006846
Soudzilovskaia, N. A., Vaessen, S., Barcelo, M., He, J., Rahimlou, S., Abarenkov, K., Brudrett, M. C., Gomes, S. I. F., Merckx, V., & Tedersoo, L. (2020). FungalRoot: Global online database of plant mycorrhizal associations. New Phytologist, 227(3), 955-966. https://doi.org/10.1101/717488
Sutton, M. A., Dragosits, U., Tang, Y. S., & Fowler, D. (2000). Ammonia emissions from non-agricultural sources in the UK. Atmospheric Environment, 34(6), 855-869. https://doi.org/10.1016/s1352-2310(99)00362-3
Tang, L., Han, W., Chen, Y., & Fang, J. (2013). Resorption proficiency and efficiency of leaf nutrients in woody plants in eastern China. Journal of Plant Ecology, 6(5), 408-417. https://doi.org/10.1093/jpe/rtt013
Tatem, A. J. (2017). WorldPop, open data for spatial demography. Scientific Data, 4(1), 1-4. https://doi.org/10.1038/sdata.2017.4
Tian, J., Wei, K., Sun, T., Jiang, N., Chen, Z., Feng, J., Cai, K., & Chen, L. (2022). Different forms of nitrogen deposition show variable effects on soil organic nitrogen turnover in a temperate forest. Applied Soil Ecology, 169, 104212. https://doi.org/10.1016/j.apsoil.2021.104212
Trammell, T. L., Pataki, D. E., Pouyat, R. V., Groffman, P. M., Rosier, C., Bettez, N., Cavender-Bares, J., Grove, M. J., Hall, S. J., Heffernan, J., Hobbie, S. E., Morse, J. L., Neill, C., & Steele, M. (2020). Urban soil carbon and nitrogen converge at a continental scale. Ecological Monographs, 90(2), e01401. https://doi.org/10.1002/ecm.1401
Trammell, T. L. E., Pataki, D. E., Cavender-Bares, J., Groffman, P. M., Hall, S. J., Heffernan, J. B., Hobbie, S. E., Morse, L. J., Neill, C., & Nelson, K. C. (2016). Plant nitrogen concentration and isotopic composition in residential lawns across seven US cities. Oecologia, 181, 271-285. https://doi.org/10.1007/s00442-016-3566-9
Tu, Y., Wang, A., Zhu, F., Gurmesa, G. A., Hobbie, E. A., Zhu, W., & Fang, Y. (2022). Trajectories in nitrogen availability during forest secondary succession: Illustrated by foliar δ15N. Ecological Processes, 11(1), 1-11. https://doi.org/10.1186/s13717-022-00374-0
Twigg, M. V. (2007). Progress and future challenges in controlling automotive exhaust gas emissions. Applied Catalysis B: Environmental, 70(1-4), 2-15. https://doi.org/10.1016/j.apcatb.2006.02.029
Vallano, D. M., & Sparks, J. P. (2013). Foliar δ15N is affected by foliar nitrogen uptake, soil nitrogen, and mycorrhizae along a nitrogen deposition gradient. Oecologia, 172(1), 47-58. https://doi.org/10.1007/s00442-012-2489-3
Walters, W. W., Goodwin, S. R., & Michalski, G. (2015). Nitrogen stable isotope composition (δ15N) of vehicle-emitted NOx. Environmental Science and Technology, 49(4), 2278-2285. https://doi.org/10.1021/es505580v
Walters, W. W., Tharp, B. D., Fang, H., Kozak, B. J., & Michalski, G. (2015). Nitrogen isotope composition of thermally produced NOx from various fossil-fuel combustion sources. Environmental Science and Technology, 49(19), 11363-11371. https://doi.org/10.1021/acs.est.5b02769
Wan, X., Huang, Z., He, Z., Yu, Z., Wang, M., Davis, M. R., & Yang, Y. (2015). Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant and Soil, 387, 103-116. https://doi.org/10.1007/s11104-014-2277-4
Wang, C., Wang, X., Liu, D., Wu, H., Lü, X., Fang, Y., Cheng, W., Luo, W., Jiang, P., Shi, J., Yin, H., Zhou, J., Han, X., & Bai, E. (2014). Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nature Communications, 5(1), 1-8. https://doi.org/10.1038/ncomms5799
Wang, X. (2021). Analysis of influencing factor of China's new energy vehicle ownership and research on its forecasting methods. [Master dissertation, North China Electric Power University]. http://dx.chinadoi.cn/10.27140/d.cnki.ghbbu.2021.001523
Wang, Y., Tang, Y., Xia, N., Terrer, C., Guo, H., & Du, E. (2023). Urban CO2 imprints on carbon isotope and growth of Chinese pine in the Beijing metropolitan region. Science of the Total Environment, 866, 161389. https://doi.org/10.1016/j.scitotenv.2023.161389
Wen, Z., Xu, W., Li, Q., Han, M., Tang, A., Zhang, Y., Luo, X., Shen, J., Wang, W., Li, K., Pan, Y., Zhang, L., Li, W., Collett, J. L., Jr., Zhong, B., Wang, X., Goulding, K., Zhang, F., & Liu, X. (2020). Changes of nitrogen deposition in China from 1980 to 2018. Environment International, 144, 106022. https://doi.org/10.1016/j.envint.2020.106022
Wu, J., Song, M., Ma, W., Zhang, X., Shen, Z., Tarolli, P., Wurst, S., Shi, P., Ratzmann, G., Feng, Y., Li, M., Wang, X., & Tietjen, B. (2019). Plant and soil's δ15N are regulated by climate, soil nutrients, and species diversity in alpine grasslands on the northern Tibetan plateau. Agriculture, Ecosystems and Environment, 281, 111-123. https://doi.org/10.1016/j.agee.2019.05.011
Wu, X., Du, E., Guo, Y., Xia, N., Tang, Y., Wang, Y., & Guo, H. (2021). Climate control of topsoil potassium, calcium, and magnesium concentrations in urban forests across eastern China. Journal of Geophysical Research: Biogeosciences, 126(9), e2020JG006230. https://doi.org/10.1029/2020jg006230
Xia, N., Du, E., Guo, Y., Tang, Y., Wang, Y., & de Vries, W. (2022). Urban soil phosphorus hotspot and its imprint on tree leaf phosphorus concentrations in the Beijing region. Plant and Soil, 477(1-2), 425-437. https://doi.org/10.1007/s11104-022-05421-5
Xu, S., Liu, L. L., & Sayer, E. J. (2013). Variability of above-ground litter inputs alters soil physicochemical and biological processes: A meta-analysis of litterfall-manipulation experiments. Biogeosciences, 10(11), 7423-7433. https://doi.org/10.5194/bg-10-7423-2013
Yu, G., Jia, Y., He, N., Zhu, J., Chen, Z., Wang, Q., Piao, S., Liu, X., He, H., Guo, X., Wen, Z., Li, P., Ding, G., & Goulding, K. (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12(6), 424-429. https://doi.org/10.1038/s41561-019-0352-4
Zhan, Y., Yao, Z., Groffman, P. M., Xie, J., Wang, Y., Li, G., Zheng, X., & Butterbach-Bahl, K. (2023). Urbanization can accelerate climate change by increasing soil N2O emission while reducing CH4 uptake. Global Change Biology, 29, 3489-3502. https://doi.org/10.1111/gcb.16652
Zhang, K., Li, M., Yan, Z., Li, M., Kang, E., Yan, L., Zhang, X., Li, Y., Wang, L., Yang, A., Niu, Y., & Kang, X. (2022). Changes in precipitation regime lead to acceleration of the N cycle and dramatic N2O emission. Science of the Total Environment, 808, 152140. https://doi.org/10.1016/j.scitotenv.2021.152140
Zhang, R., & Hanaoka, T. (2021). Deployment of electric vehicles in China to meet the carbon neutral target by 2060: Provincial disparities in energy systems, CO2 emissions, and cost effectiveness. Resources, Conservation and Recycling, 170, 105622. https://doi.org/10.1016/j.resconrec.2021.105622
Zheng, M., Zhou, Z., Luo, Y., Zhao, P., & Mo, J. (2019). Global pattern and controls of biological nitrogen fixation under nutrient enrichment: A meta-analysis. Global Change Biology, 25(9), 3018-3030. https://doi.org/10.1111/gcb.14705