[S1 guidelines for the management of postviral conditions using the example of post-COVID-19].
Leitlinie S1 für das Management postviraler Zustände am Beispiel Post-COVID-19.
Infectious diseases
Long term consequences
Long term sequelae
Persisting symptoms
Post-infectious condition
Journal
Wiener klinische Wochenschrift
ISSN: 1613-7671
Titre abrégé: Wien Klin Wochenschr
Pays: Austria
ID NLM: 21620870R
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
accepted:
14
06
2023
medline:
18
9
2023
pubmed:
9
8
2023
entrez:
9
8
2023
Statut:
ppublish
Résumé
These S1 guidelines are an updated and expanded version of the S1 guidelines on long COVID differential diagnostic and management strategies. They summarize the state of knowledge on postviral conditions like long/post COVID at the time of writing. Due to the dynamic nature of knowledge development, they are intended to be "living guidelines". The focus is on practical applicability at the level of primary care, which is understood to be the appropriate place for initial access and for primary care and treatment. The guidelines provide recommendations on the course of treatment, differential diagnostics of the most common symptoms that can result from infections like with SARS-CoV-2, treatment options, patient management and care, reintegration and rehabilitation. The guidelines have been developed through an interdisciplinary and interprofessional process and provide recommendations on interfaces and possibilities for collaboration. Die vorliegende Leitlinie S1 ist die Aktualisierung und Weiterentwicklung der Leitlinie S1 Long COVID: Differenzialdiagnostik und Behandlungsstrategien. Sie fasst den Stand der Kenntnis zu postviralen Zuständen anhand des Beispiels Long/Post COVID zum Zeitpunkt des Redaktionsschlusses zusammen. Aufgrund der starken Dynamik der Wissensentwicklung versteht sie sich als „living guideline“. Der Schwerpunkt liegt auf der praktischen Anwendbarkeit auf der Ebene der hausärztlichen Primärversorgung, die als geeignete Stelle für den Erstzutritt und für die primäre Betreuung und Behandlung verstanden wird. Die Leitlinie gibt Empfehlungen zum Versorgungsgang, zu Differenzialdiagnostik der häufigsten Symptome, die in der Folge einer Infektion wie mit SARS-CoV‑2 auftreten können, zu therapeutischen Optionen, zu Patient:innenführung und -betreuung sowie zur Wiedereingliederung in den Alltag und zur Rehabilitation. Entsprechend des Krankheitsbildes ist die Leitlinie in einem interdisziplinären und interprofessionellen Prozess entstanden und gibt Empfehlungen zu Schnittstellen und Kooperationsmöglichkeiten.
Autres résumés
Type: Publisher
(ger)
Die vorliegende Leitlinie S1 ist die Aktualisierung und Weiterentwicklung der Leitlinie S1 Long COVID: Differenzialdiagnostik und Behandlungsstrategien. Sie fasst den Stand der Kenntnis zu postviralen Zuständen anhand des Beispiels Long/Post COVID zum Zeitpunkt des Redaktionsschlusses zusammen. Aufgrund der starken Dynamik der Wissensentwicklung versteht sie sich als „living guideline“. Der Schwerpunkt liegt auf der praktischen Anwendbarkeit auf der Ebene der hausärztlichen Primärversorgung, die als geeignete Stelle für den Erstzutritt und für die primäre Betreuung und Behandlung verstanden wird. Die Leitlinie gibt Empfehlungen zum Versorgungsgang, zu Differenzialdiagnostik der häufigsten Symptome, die in der Folge einer Infektion wie mit SARS-CoV‑2 auftreten können, zu therapeutischen Optionen, zu Patient:innenführung und -betreuung sowie zur Wiedereingliederung in den Alltag und zur Rehabilitation. Entsprechend des Krankheitsbildes ist die Leitlinie in einem interdisziplinären und interprofessionellen Prozess entstanden und gibt Empfehlungen zu Schnittstellen und Kooperationsmöglichkeiten.
Identifiants
pubmed: 37555900
doi: 10.1007/s00508-023-02242-z
pii: 10.1007/s00508-023-02242-z
pmc: PMC10504206
doi:
Types de publication
English Abstract
Journal Article
Langues
ger
Sous-ensembles de citation
IM
Pagination
525-598Informations de copyright
© 2023. The Author(s).
Références
Costa U. Leitfaden für das Management von Folgen viraler Erkrankung mit SARS-CoV-2 aus Sicht der Ergotherapie. Ergänzung zur Leitlinie S1 für das Management postviraler Zustände am Beispiel Post-COVID-19. Wien Klin. Wochenschr.
Huang C, Huang L, Wang Y, et al. 6‑month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397(10270):220–32.
pubmed: 33428867
pmcid: 7833295
doi: 10.1016/S0140-6736(20)32656-8
NIHR Themed Review: Living with Covid19—Second review. 2021. https://doi.org/10.3310/themedreview_45225 . Zugegriffen: 5. Februar 2023.
Davis HE, Assaf GS, McCorkell L, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. medRxiv 2020.2012.2024.20248802. 2021.
Interview with Elisa Perego, Ph.D., on Long COVID and Social Media—Long COVID Initiative (aboutlongcovid.org). https://aboutlongcovid.org/interview-with-elisa-perego-phd-on-long-covid-and-social-media/ . Zugegriffen: 5. Jan. 2023.
Kate auf Twitter: „@felicitycallard Oh that’s funny … it absolutely came from Amy. She named the group that because of her favorite trucker hat she wore when she got tested. https://twitter.com/katemeredithp/status/1277316840453267456 . Zugegriffen: 5. Jan. 2023.
Brodin P, Casari G, Townsend L, et al. Studying severe long COVID to understand post-infectious disorders beyond COVID-19. Nat Med. 2022;28(5):879–82.
pubmed: 35383311
doi: 10.1038/s41591-022-01766-7
Sudre CH, Murray B, Varsavsky T, et al. Attributes and predictors of long COVID. Nat Med. 2021;27(4):626–31.
pubmed: 33692530
pmcid: 7611399
doi: 10.1038/s41591-021-01292-y
Nehme M, Braillard O, Chappuis F, et al. The chronification of post-COVID condition associated with neurocognitive symptoms, functional impairment and increased healthcare utilization. Sci Rep. 2022;12(1):14505.
pubmed: 36008436
pmcid: 9403954
doi: 10.1038/s41598-022-18673-z
O’Mahoney LL, Routen A, Gillies C, et al. The prevalence and long-term health effects of Long Covid among hospitalised and non-hospitalised populations: a systematic review and meta-analysis. eClinicalMedicine. 2023;55. https://doi.org/10.1016/j.eclinm.2022.101762 .
World Health O. Clinical management of COVID-19: living guideline. 2022.
Langfassung S3-Leitlinie Müdigkeit. https://register.awmf.org/assets/guidelines/053-002l_S3_Muedigkeit_2023-01_01.pdf . Zugegriffen: 17. März 2023.
AWMF S1-Leitlinie Long/ Post-COVID. https://www.awmf.org/uploads/tx_szleitlinien/020-027l_S1_Post_COVID_Long_COVID_2022-08.pdf . Zugegriffen: 3. Febr. 2023.
Excellence NNIfHaC. Excellence NNIfHaC. Myalgic encephalomyelitis (or encephalopathy)/chronic fatigue syndrome: diagnosis and management. https://www.nice.org.uk/guidance/ng206 (Erstellt: 29. Okt. 2021). Zugegriffen: 2. März 2023.
Marx, V. Scientists set out to connect the dots on long COVID. Nat Methods 18, 449–453 (2021). https://doi.org/10.1038/s41592-021-01145-z .
Moreno-Pérez O, Merino E, Leon-Ramirez J‑M, et al. Post-acute COVID-19 syndrome. Incidence and risk factors: a Mediterranean cohort study. J Infect. 2021;82(3):378–83.
pubmed: 33450302
pmcid: 7802523
doi: 10.1016/j.jinf.2021.01.004
Amenta EM, Spallone A, Rodriguez-Barradas MC, El Sahly HM, Atmar RL, Kulkarni PA. Postacute COVID-19: an overview and approach to classification. Open Forum Infect Dis. 2020;7(12). https://doi.org/10.1093/ofid/ofaa509 .
National Institute for Health and Care Excellence (NICE). NICE guideline (NG188): COVID-19 rapid guideline: managing the long-term effects of COVID-19. https://www.nice.org.uk/guidance/ng188/resources/covid19-rapid-guideline-managing-the-longterm-effects-of-covid19-pdf-51035515742 . Zugegriffen: 25. Febr. 2023.
Greenhalgh T, Knight M, A’Court C, Buxton M, Husain L. Management of post-acute covid-19 in primary care. BMJ. 2020;370:m3026.
pubmed: 32784198
doi: 10.1136/bmj.m3026
WHO. A clinical case definition of post COVID-19 condition by a Delphi consensus. 2021.
CDC. Long COVID or post-COVID conditions. https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html . Zugegriffen: 10. Febr. 2023.
Töpfner N, Alberer M, Ankermann T, et al. Recommendation for standardized medical care for children and adolescents with long COVID. Monatsschr Kinderheilkd. 2022;170(6):539–47.
pubmed: 35637934
pmcid: 9131710
doi: 10.1007/s00112-021-01408-1
Sudre CH, Murray B, Varsavsky T, et al. Attributes and predictors of Long-COVID: analysis of COVID cases and their symptoms collected by the Covid Symptoms Study App. medRxiv 2020.2010.2019.20214494. 2020.
Carfì A, Bernabei R, Landi F, Group ftGAC-P-ACS. Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324(6):603–5.
pubmed: 32644129
pmcid: 7349096
doi: 10.1001/jama.2020.12603
Chen C, Haupert SR, Zimmermann L, Shi X, Fritsche LG, Mukherjee B. Global prevalence of post-Coronavirus disease 2019 (COVID-19) condition or long COVID: a meta-analysis and systematic review. J Infect Dis. 2022;226(9):1593–607.
pubmed: 35429399
doi: 10.1093/infdis/jiac136
Prevalence of post COVID-19 condition symptoms: a systematic review and meta-analysis of cohort study data, stratified by recruitment setting. https://www.ecdc.europa.eu/sites/default/files/documents/Prevalence-post-COVID-19-condition-symptoms.pdf . Zugegriffen: 4. März 2023.
Thompson EJ, Williams DM, Walker AJ, et al. Long COVID burden and risk factors in 10 UK longitudinal studies and electronic health records. Nat Commun. 2022;13(1):3528.
pubmed: 35764621
pmcid: 9240035
doi: 10.1038/s41467-022-30836-0
Franco JVA, Garegnani LI, Oltra GV, et al. Long-term health symptoms and sequelae following SARS-coV‑2 infection: an evidence map. Int J Environ Res Public Health. 2022;19(16):9915. https://doi.org/10.3390/ijerph19169915 .
RKI. Scoping review und evidence maps zu long Covid. https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Long-COVID/Scoping-Review.html . Zugegriffen: 19. März 2023.
Iqbal FM, Lam K, Sounderajah V, Clarke JM, Ashrafian H, Darzi A. Characteristics and predictors of acute and chronic post-COVID syndrome: a systematic review and meta-analysis. EClinicalMedicine. 2021;36:100899–100899.
pubmed: 34036253
pmcid: 8141371
doi: 10.1016/j.eclinm.2021.100899
Ballering AV, van Zon SKR, olde Hartman TC, Rosmalen JGM. Persistence of somatic symptoms after COVID-19 in the Netherlands: an observational cohort study. Lancet. 2022;400(10350):452–61.
pubmed: 35934007
pmcid: 9352274
doi: 10.1016/S0140-6736(22)01214-4
Krishna BA, Lim EY, Mactavous L, et al. Evidence of previous SARS-CoV‑2 infection in seronegative patients with long COVID. EBioMedicine. 2022;81:104129.
pubmed: 35772216
pmcid: 9235296
doi: 10.1016/j.ebiom.2022.104129
Rabady S, Hoffmann K, Brose M, et al. Symptoms and risk factors for hospitalization of COVID-19 presented in primary care : An exploratory retrospective study. Wien Klin Wochenschr. 2022;134(9-10):335–43.
pubmed: 35149931
pmcid: 8852901
doi: 10.1007/s00508-021-01992-y
FACING THE IMPACT OF POST-COVID-19 CONDITION (LONG COVID) ON HEALTH SYSTEMS Opinion of the Expert Panel on effective ways of investing in health (EXPH). https://health.ec.europa.eu/system/files/2022-12/031_longcovid_en.pdf . Zugegriffen: 19. März 2023.
Selvakumar J, Havdal LB, Drevvatne M, et al. Prevalence and characteristics associated with post-COVID-19 condition among nonhospitalized adolescents and young adults. JAMA Netw Open. 2023;6(3):e235763.
pubmed: 36995712
pmcid: 10064252
doi: 10.1001/jamanetworkopen.2023.5763
Matta J, Wiernik E, Robineau O, et al. Association of self-reported COVID-19 infection and SARS-coV‑2 serology test results with persistent physical symptoms among French adults during the COVID-19 pandemic. JAMA Intern Med. 2022;182(1):19–25.
pubmed: 34747982
doi: 10.1001/jamainternmed.2021.6454
Fogh K, Larsen TG, Hansen CB, et al. Self-reported long COVID and its association with the presence of SARS-coV‑2 antibodies in a Danish cohort up to 12 months after infection. Microbiol Spectr. 2022;10(6):e253722.
pubmed: 36350150
doi: 10.1128/spectrum.02537-22
Brandt CT, Wiese L, Christiansen KM, Agergaard J. Antibodies to nucleocapsid are not diagnostic for long COVID. Microbiol Spectr. 2023;11(2):e490022.
pubmed: 36809148
doi: 10.1128/spectrum.04900-22
Nehme M, Braillard O, Chappuis F, et al. One-year persistent symptoms and functional impairment in SARS-CoV‑2 positive and negative individuals. J Intern Med. 2022;292(1):103–15.
pubmed: 35555926
pmcid: 9115262
doi: 10.1111/joim.13482
Antonelli M, Pujol JC, Spector TD, Ourselin S, Steves CJ. Risk of long COVID associated with delta versus omicron variants of SARS-CoV‑2. Lancet. 2022;399(10343):2263–4.
pubmed: 35717982
pmcid: 9212672
doi: 10.1016/S0140-6736(22)00941-2
Antonelli M, Penfold RS, Merino J, et al. Risk factors and disease profile of post-vaccination SARS-CoV‑2 infection in UK users of the COVID Symptom Study app: a prospective, community-based, nested, case-control study. Lancet Infect Dis. 2022;22(1):43–55.
pubmed: 34480857
pmcid: 8409907
doi: 10.1016/S1473-3099(21)00460-6
Taquet M, Sillett R, Zhu L, et al. Neurological and psychiatric risk trajectories after SARS-CoV‑2 infection: an analysis of 2‑year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry. 2022;9(10):815–27.
pubmed: 35987197
pmcid: 9385200
doi: 10.1016/S2215-0366(22)00260-7
Ziyad Al-Aly BB, Xie Y, et al. Outcomes of SARS-CoV‑2 Reinfection. (Erstellt: 17. Juni 2022. https://doi.org/10.21203/rs.3.rs-1749502/v1 , PREPRINT (Version 1) available at Research Square. Zugegriffen: 10. Jan. 2023.
Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594(7862):259–64.
pubmed: 33887749
doi: 10.1038/s41586-021-03553-9
Carvalho-Schneider C, Laurent E, Lemaignen A, et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin Microbiol Infect. 2021;27(2):258–63.
pubmed: 33031948
doi: 10.1016/j.cmi.2020.09.052
Tsampasian V, Elghazaly H, Chattopadhyay R, et al. Risk Factors Associated With Post−COVID-19 Condition: A Systematic Review and Meta-analysis. JAMA Intern Med. 2023;183(6):566–580. https://doi.org/10.1001/jamainternmed.2023.0750 .
Stavem K, Ghanima W, Olsen MK, Gilboe HM, Einvik G. Persistent symptoms 1.5–6 months after COVID-19 in non-hospitalised subjects: a population-based cohort study. Thorax. 2021;76(4):405–7.
pubmed: 33273028
doi: 10.1136/thoraxjnl-2020-216377
Goërtz YMJ, Van Herck M, Delbressine JM, et al. Persistent symptoms 3 months after a SARS-CoV‑2 infection: the post-COVID-19 syndrome? ERJ Open Res. 2020;6(4):542–2020.
pubmed: 33257910
pmcid: 7491255
doi: 10.1183/23120541.00542-2020
Su Y, Yuan D, Chen DG, et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022;185(5):881–895.e820.
pubmed: 35216672
pmcid: 8786632
doi: 10.1016/j.cell.2022.01.014
Garg M, Maralakunte M, Garg S, et al. The conundrum of ‘long-COVID-19’: a narrative review. Int J Gen Med. 2021;14:2491–506.
pubmed: 34163217
pmcid: 8214209
doi: 10.2147/IJGM.S316708
Cervia C, Zurbuchen Y, Taeschler P, et al. Immunoglobulin signature predicts risk of post-acute COVID-19 syndrome. Nat Commun. 2022;13(1):446.
pubmed: 35078982
pmcid: 8789854
doi: 10.1038/s41467-021-27797-1
Nieß AM, Bloch W, Friedmann-Bette B, Grim C, Halle M, Hirschmüller A, Kopp C, Meyer T, Niebauer J, Reinsberger C,Röcker K, Scharhag J, Scherr J, Schneider C, Steinacker JM, Urhausen A, Wolfarth B, Mayer F. Position stand: return to sport in the current Coronavirus pandemic (SARS-CoV-2 / COVID-19). Dtsch Z Sportmed. 2020;71:E1–E4. https://doi.org/10.5960/dzsm.2020.437 .
Elliott N, Martin R, Heron N, Elliott J, Grimstead D, Biswas A. Infographic. Graduated return to play guidance following COVID-19 infection. Br J Sports Med. 2020;54(19):1174–5.
pubmed: 32571796
doi: 10.1136/bjsports-2020-102637
Wright J, Astill SL, Sivan M. The Relationship between Physical Activity and Long COVID: A Cross-Sectional Study. Int J Environ Res Public Health. 2022;19:5093. https://doi.org/10.3390/ijerph19095093 .
Reuschke D, Houston D. The impact of Long COVID on the UK workforce. Appl Econ Lett. 2022; 1–5. https://doi.org/10.1080/13504851.2022.2098239 .
Shutters ST. Modelling long-term COVID-19 impacts on the U.S. workforce of 2029. PLoS ONE. 2021;16(12):e260797.
pubmed: 34852022
pmcid: 8635400
doi: 10.1371/journal.pone.0260797
Al-Oraibi A, Woolf K, Nellums LB, Tarrant C, Naqvi H, Pareek M. Caring for the carers: understanding long covid in our diverse healthcare workforce. BMJ. 2022;377:o1152.
pubmed: 35523438
doi: 10.1136/bmj.o1152
Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022;43(11):1157–72.
pubmed: 35176758
pmcid: 8903393
doi: 10.1093/eurheartj/ehac031
Tobler DL, Pruzansky AJ, Naderi S, Ambrosy AP, Slade JJ. Long-term cardiovascular effects of COVID-19: emerging data relevant to the cardiovascular clinician. Curr Atheroscler Rep. 2022;24(7):563–70.
pubmed: 35507278
pmcid: 9065238
doi: 10.1007/s11883-022-01032-8
Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583–90.
pubmed: 35132265
pmcid: 8938267
doi: 10.1038/s41591-022-01689-3
Monje M, Iwasaki A. The neurobiology of long COVID. Neuron. 2022;110(21):3484–96.
pubmed: 36288726
pmcid: 9537254
doi: 10.1016/j.neuron.2022.10.006
Zhao S, Shibata K, Hellyer PJ, et al. Rapid vigilance and episodic memory decrements in COVID-19 survivors. Brain Commun. 2022;4(1):fcab295.
pubmed: 35128398
pmcid: 8807287
doi: 10.1093/braincomms/fcab295
Govender M, Hopkins FR, Goransson R, et al. T cell perturbations persist for at least 6 months following hospitalization for COVID-19. Front Immunol. 2022;13:931039.
pubmed: 36003367
pmcid: 9393525
doi: 10.3389/fimmu.2022.931039
Phetsouphanh C, Darley DR, Wilson DB, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV‑2 infection. Nat Immunol. 2022;23(2):210–6.
pubmed: 35027728
doi: 10.1038/s41590-021-01113-x
Jing Y, Luo L, Chen Y, et al. SARS-CoV‑2 infection causes immunodeficiency in recovered patients by downregulating CD19 expression in B cells via enhancing B‑cell metabolism. Signal Transduct Target Ther. 2021;6(1):345.
pubmed: 34552055
pmcid: 8456405
doi: 10.1038/s41392-021-00749-3
Wise J. Long covid: Hair loss and sexual dysfunction are among wider symptoms, study finds. BMJ. 2022;378:o1887.
pubmed: 35896202
doi: 10.1136/bmj.o1887
Havervall S, Rosell A, Phillipson M, et al. Symptoms and functional impairment assessed 8 months after mild COVID-19 among health care workers. JAMA. 2021;325(19):2015–6.
pubmed: 33825846
pmcid: 8027932
doi: 10.1001/jama.2021.5612
Logue JK, Franko NM, McCulloch DJ, et al. Sequelae in adults at 6 months after COVID-19 infection. JAMA Netw Open. 2021;4(2):e210830.
pubmed: 33606031
pmcid: 7896197
doi: 10.1001/jamanetworkopen.2021.0830
Tenforde M, Kim S, Lindsell C, et al. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network—United States, march–June 2020. MMWR Morb Mortal Wkly Rep. 2020;69. https://doi.org/10.15585/mmwr.mm6930e1 .
Nasserie T, Hittle M, Goodman SN. Assessment of the frequency and variety of persistent symptoms among patients with COVID-19: a systematic review. JAMA Netw Open. 2021;4(5):e2111417.
pubmed: 34037731
pmcid: 8155823
doi: 10.1001/jamanetworkopen.2021.11417
Sørensen AIV, Spiliopoulos L, Bager P, et al. A nationwide questionnaire study of post-acute symptoms and health problems after SARS-CoV‑2 infection in Denmark. Nat Commun. 2022;13(1):4213.
pubmed: 35864108
pmcid: 9302226
doi: 10.1038/s41467-022-31897-x
Peluso MJ, Deveau TM, Munter SE, et al. Chronic viral coinfections differentially affect the likelihood of developing long COVID. J Clin Invest. 2023;133(3). https://doi.org/10.1172/JCI163669 .
Gold JE, Okyay RA, Licht WE, Hurley DJ. Investigation of long COVID prevalence and its relationship to Epstein-Barr virus reactivation. Pathogens. 2021;10(6):763.
pubmed: 34204243
pmcid: 8233978
doi: 10.3390/pathogens10060763
Rohrhofer J, Graninger M, Lettenmaier L, et al. Association between Epstein-Barr-Virus reactivation and development of Long-COVID fatigue. Allergy. 2023;78(1):297–9.
pubmed: 35950630
doi: 10.1111/all.15471
Lammi V, Ollila HM. Tackling Long COVID using international host genetics research collaboration. Sleep Med. 2022;100:S64–S5.
pmcid: 9300219
doi: 10.1016/j.sleep.2022.05.184
Choutka J, Jansari V, Hornig M, Iwasaki A. Unexplained post-acute infection syndromes. Nat Med. 2022;28(5):911–23.
pubmed: 35585196
doi: 10.1038/s41591-022-01810-6
Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133–46.
pubmed: 36639608
pmcid: 9839201
doi: 10.1038/s41579-022-00846-2
Klein J, Wood J, Jaycox J, et al. Distinguishing features of Long COVID identified through immune profiling. medRxiv. 2022.
doi: 10.1101/2022.08.09.22278592
Garg P, Arora U, Kumar A, Wig N. The “post-COVID” syndrome: How deep is the damage? J Med Virol. 2021;93(2):673–4.
pubmed: 32852801
doi: 10.1002/jmv.26465
Kopanska M, Batoryna M, Bartman P, Szczygielski J, Banas-Zabczyk A. Disorders of the Cholinergic system in COVID-19 era—A review of the latest research. Int J Mol Sci. 2022;23(2). https://doi.org/10.3390/ijms23020672 .
Herman JP, McKlveen JM, Ghosal S, et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol. 2016;6(2):603–21.
pubmed: 27065163
pmcid: 4867107
doi: 10.1002/cphy.c150015
Schultheiß C, Willscher E, Paschold L, et al. The IL-1β, IL‑6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep Med. 2022;3(6):100663.
pubmed: 35732153
pmcid: 9214726
doi: 10.1016/j.xcrm.2022.100663
Ehrenfeld M, Tincani A, Andreoli L, et al. Covid-19 and autoimmunity. Autoimmun Rev. 2020;19(8):102597.
pubmed: 32535093
pmcid: 7289100
doi: 10.1016/j.autrev.2020.102597
Kazemian N, Kao D, Pakpour S. Fecal microbiota transplantation during and post-COVID-19 pandemic. Int J Mol Sci. 2021;22(6):3004.
pubmed: 33809421
pmcid: 7998826
doi: 10.3390/ijms22063004
Zuo T, Zhan H, Zhang F, et al. Alterations in fecal fungal microbiome of patients with COVID-19 during time of hospitalization until discharge. Gastroenterology. 2020;159(4):1302–1310.e1305.
pubmed: 32598884
doi: 10.1053/j.gastro.2020.06.048
Zuo T, Zhang F, Lui GCY, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020;159(3):944–955.e8.
pubmed: 32442562
doi: 10.1053/j.gastro.2020.05.048
Zuo Y, Estes SK, Ali RA, et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med. 2020;12(570):eabd3876.
pubmed: 33139519
pmcid: 7724273
doi: 10.1126/scitranslmed.abd3876
Elkon K, Casali P. Nature and functions of autoantibodies. Nature clinical practice. Rheumatology. 2008;4(9):491–8.
pubmed: 18756274
Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6(1):15.
pubmed: 29736302
pmcid: 5920070
doi: 10.1038/s41413-018-0016-9
Guntur VP, Nemkov T, de Boer E, et al. Signatures of Mitochondrial dysfunction and impaired fatty acid metabolism in plasma of patients with post-acute sequelae of COVID-19 (PASC). Metabolites. 2022;12(11). https://doi.org/10.3390/metabo12111026 .
Varga Z. Endotheliitis bei COVID-19. Pathologe. 2020;41(2):99–102.
pubmed: 33306138
pmcid: 7731145
doi: 10.1007/s00292-020-00875-9
Xu SW, Ilyas I, Weng JP. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin. 2022;1–15. https://doi.org/10.1038/s41401-022-00998-0 .
Patel MA, Knauer MJ, Nicholson M, et al. Elevated vascular transformation blood biomarkers in Long-COVID indicate angiogenesis as a key pathophysiological mechanism. Mol Med. 2022;28(1):122.
pubmed: 36217108
pmcid: 9549814
doi: 10.1186/s10020-022-00548-8
Turner S, Naidoo CA, Usher TJ, et al. Increased levels of inflammatory molecules in blood of Long COVID patients point to thrombotic endotheliitis. medRxiv 2022.2010.2013.22281055. 2022.
doi: 10.1101/2022.10.13.22281055
Talla A, Vasaikar SV, Lemos MP, et al. Longitudinal immune dynamics of mild COVID-19 define signatures of recovery and persistence. bioRxiv. 2021.
doi: 10.1101/2021.05.26.442666
von Meijenfeldt FA, Havervall S, Adelmeijer J, et al. Sustained prothrombotic changes in COVID-19 patients 4 months after hospital discharge. Blood Adv. 2021;5(3):756–9.
doi: 10.1182/bloodadvances.2020003968
Maher AK, Burnham KL, Jones EM, et al. Transcriptional reprogramming from innate immune functions to a pro-thrombotic signature by monocytes in COVID-19. Nat Commun. 2022;13(1):7947.
pubmed: 36572683
pmcid: 9791976
doi: 10.1038/s41467-022-35638-y
Knight R, Walker V, Ip S, et al. Association of COVID-19 with major arterial and venous thrombotic diseases: a population—wide cohort study of 48 million adults in england and Wales. Circulation. 2022;146:892–906.
pubmed: 36121907
pmcid: 9484653
doi: 10.1161/CIRCULATIONAHA.122.060785
Bektas A, Schurman SH, Franceschi C, Ferrucci L. A public health perspective of aging: do hyper-inflammatory syndromes such as COVID-19, SARS, ARDS, cytokine storm syndrome, and post-ICU syndrome accelerate short- and long-term inflammaging? Immun Ageing. 2020;17(1):23.
pubmed: 32849908
pmcid: 7443812
doi: 10.1186/s12979-020-00196-8
Mongelli A, Barbi V, Gottardi Zamperla M, et al. Evidence for biological age acceleration and telomere shortening in COVID-19 survivors. Int J Mol Sci. 2021;22(11). https://doi.org/10.3390/ijms22116151 .
Iwasaki A, Putrino D. Why we need a deeper understanding of the pathophysiology of long COVID. Lancet Infect Dis. 2023;23(4):393–5.
pubmed: 36967698
pmcid: 9928485
doi: 10.1016/S1473-3099(23)00053-1
Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV‑2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020;6(31):eabc5801.
pubmed: 32937591
doi: 10.1126/sciadv.abc5801
Chiu A, Fischbein N, Wintermark M, Zaharchuk G, Yun PT, Zeineh M. COVID-19-induced anosmia associated with olfactory bulb atrophy. Neuroradiology. 2021;63(1):147–8.
pubmed: 32930820
doi: 10.1007/s00234-020-02554-1
Fleischer M, Szepanowski F, Tovar M, et al. Post-COVID-19 syndrome is rarely associated with damage of the nervous system: findings from a prospective observational cohort study in 171 patients. Neurol Ther. 2022;11(4):1637–57.
pubmed: 36028604
pmcid: 9417089
doi: 10.1007/s40120-022-00395-z
Kase Y, Sonn I, Goto M, Murakami R, Sato T, Okano H. The original strain of SARS-CoV‑2, the Delta variant, and the Omicron variant infect microglia efficiently, in contrast to their inability to infect neurons: Analysis using 2D and 3D cultures. Exp Neurol. 2023;363:114379.
pubmed: 36914084
pmcid: 10008041
doi: 10.1016/j.expneurol.2023.114379
Gelpi E, Klotz S, Beyerle M, et al. Multifactorial white matter damage in the acute phase and pre-existing conditions May drive cognitive dysfunction after SARS-coV‑2 infection: neuropathology-based evidence. Viruses. 2023;15(4):908.
pubmed: 37112888
pmcid: 10144140
doi: 10.3390/v15040908
Zhang T, Mei Q, Zhang Z, et al. Risk for newly diagnosed diabetes after COVID-19: a systematic review and meta-analysis. BMC Med. 2022;20(1):444.
pubmed: 36380329
pmcid: 9666960
doi: 10.1186/s12916-022-02656-y
Sonnweber T, Sahanic S, Pizzini A, et al. Cardiopulmonary recovery after COVID-19: an observational prospective multicentre trial. Eur Respir J. 2021;57(4). https://doi.org/10.1183/13993003.03481-2020 .
Griffin DE. Measles virus-induced suppression of immune responses. Immunol Rev. 2010;236:176–89.
pubmed: 20636817
pmcid: 2908915
doi: 10.1111/j.1600-065X.2010.00925.x
Mina MJ, Kula T, Leng Y, et al. Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science. 2019;366(6465):599–606.
pubmed: 31672891
pmcid: 8590458
doi: 10.1126/science.aay6485
Debeaumont D, Boujibar F, Ferrand-Devouge E, et al. Cardiopulmonary exercise testing to assess persistent symptoms at 6 months in people with COVID-19 who survived hospitalization—A pilot study. Phys Ther. 2021; Volume 101, Issue 6, June 2021, pzab099. https://doi.org/10.1093/ptj/pzab099 .
Regmi B, Friedrich J, Jörn B, et al. Diaphragm muscle weakness might explain exertional dyspnea fifteen months after hospitalization for COVID-19. Am J Respir Crit Care Med. 2023. https://doi.org/10.1164/rccm.202206-1243OC .
Myall KJ, Mukherjee B, Castanheira AM, et al. Persistent post-COVID-19 interstitial lung disease. An observational study of corticosteroid treatment. Ann Am Thorac Soc. 2021;18(5):799–806.
pubmed: 33433263
pmcid: 8086530
doi: 10.1513/AnnalsATS.202008-1002OC
Culebras M, Loor K, Sansano I, et al. Histological findings in transbronchial cryobiopsies obtained from patients after COVID-19. Chest. 2022;161(3):647–50.
pubmed: 34582842
doi: 10.1016/j.chest.2021.09.016
Kanne JP, Little BP, Schulte JJ, Haramati A, Haramati LB. Long-term lung abnormalities associated with COVID-19 pneumonia. Radiology. 2022;221806. https://doi.org/10.1148/radiol.221806 .
Luger AK, Sonnweber T, Gruber L, et al. Chest CT of lung injury 1 year after COVID-19 pneumonia: the CovILD study. Radiology. 2022;304(2):462–70.
pubmed: 35348379
doi: 10.1148/radiol.211670
Huang L, Li X, Gu X, et al. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study. Lancet Respir Med. 2022;10(9):863–76.
pubmed: 35568052
pmcid: 9094732
doi: 10.1016/S2213-2600(22)00126-6
Dhawan RT, Gopalan D, Howard L, et al. Beyond the clot: perfusion imaging of the pulmonary vasculature after COVID-19. Lancet Respir Med. 2021;9(1):107–16.
pubmed: 33217366
doi: 10.1016/S2213-2600(20)30407-0
Wells AU, Devaraj A, Desai SR. Interstitial lung disease after COVID-19 infection: a catalog of uncertainties. Radiology. 2021;299(1):E216–E8.
pubmed: 33502279
doi: 10.1148/radiol.2021204482
Leo F, Bulau JE, Semper H, Grohe C. Correlation of respiratory muscle function and cardiopulmonary exercise testing in post-acute COVID-19 syndrome. Infection. 2022;1–4. https://doi.org/10.1007/s15010-022-01899-4 .
Cho JL, Villacreses R, Nagpal P, et al. Quantitative chest CT assessment of small airways disease in post-acute SARS-coV‑2 infection. Radiology. 2022;304(1):185–92.
pubmed: 35289657
doi: 10.1148/radiol.212170
Durstenfeld MS, Sun K, Tahir P, et al. Use of cardiopulmonary exercise testing to evaluate long COVID-19 symptoms in adults: a systematic review and meta-analysis. JAMA Netw Open. 2022;5(10):e2236057.
pubmed: 36223120
pmcid: 9557896
doi: 10.1001/jamanetworkopen.2022.36057
Fresard I, Genecand L, Altarelli M, et al. Dysfunctional breathing diagnosed by cardiopulmonary exercise testing in ‘long COVID’ patients with persistent dyspnoea. BMJ Open Respir Res. 2022;9(1). https://doi.org/10.1136/bmjresp-2021-001126 .
von Gruenewaldt A, Nylander E, Hedman K. Classification and occurrence of an abnormal breathing pattern during cardiopulmonary exercise testing in subjects with persistent symptoms following COVID-19 disease. Physiol Rep. 2022;10(4):e15197.
doi: 10.14814/phy2.15197
Heidbreder A, Sonnweber T, Stefani A, et al. Video-polysomnographic findings after acute COVID-19: REM sleep without atonia as sign of CNS pathology? Sleep Med. 2021;80:92–5.
pubmed: 33588262
pmcid: 7985859
doi: 10.1016/j.sleep.2021.01.051
Group TWCftCS. Four-month clinical status of a cohort of patients after hospitalization for COVID-19. JAMA. 2021;325(15):1525–34.
doi: 10.1001/jama.2021.3331
Dennis A, Wamil M, Alberts J, et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study. BMJ Open. 2021;11(3):e48391.
pubmed: 33785495
doi: 10.1136/bmjopen-2020-048391
Petersen EL, Goßling A, Adam G, et al. Multi-organ assessment in mainly non-hospitalized individuals after SARS-CoV‑2 infection: The Hamburg City Health Study COVID programme. Eur Heart J. 2022;43(11):1124–37.
pubmed: 34999762
pmcid: 8755397
doi: 10.1093/eurheartj/ehab914
Raveendran AV, Jayadevan R, Sashidharan S. Long COVID: an overview. Diabetes Metab Syndr. 2021;15(3):869–75.
pubmed: 33892403
pmcid: 8056514
doi: 10.1016/j.dsx.2021.04.007
Koczulla A, Ankermann T, Behrends U, et al. S1-Leitlinie Post-COVID/Long-COVID. 2021. AWMF online.
doi: 10.1055/a-1551-9734
Writing C, Gluckman TJ, Bhave NM, et al. 2022 ACC expert consensus decision pathway on cardiovascular sequelae of COVID-19 in adults: myocarditis and other myocardial involvement, post-acute sequelae of SARS-coV‑2 infection, and return to play: a report of the American college of cardiology solution set oversight committee. J Am Coll Cardiol. 2022;79(17):1717–56.
doi: 10.1016/j.jacc.2022.02.003
Aparisi Á, Ybarra-Falcón C, García-Gómez M, et al. Exercise ventilatory inefficiency in post-COVID-19 syndrome: insights from a prospective evaluation. J Clin Med. 2021;10(12). https://doi.org/10.3390/jcm10122591 .
Giustino G, Croft LB, Stefanini GG, et al. Characterization of Myocardial Injury in Patients With COVID–19. J Am Coll Cardiol. 2020;76(18):2043–55.
pubmed: 33121710
pmcid: 7588179
doi: 10.1016/j.jacc.2020.08.069
Bozkurt B, Coats AJS, Tsutsui H, et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur J Heart Fail. 2021;23(3):352–80.
pubmed: 33605000
doi: 10.1002/ejhf.2115
Meinhardt J, Radke J, Dittmayer C, et al. Olfactory transmucosal SARS-CoV‑2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24(2):168–75.
pubmed: 33257876
doi: 10.1038/s41593-020-00758-5
Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus‑2. Int J Infect Dis. 2020;94:55–8.
pubmed: 32251791
pmcid: 7195378
doi: 10.1016/j.ijid.2020.03.062
Fabbri VP, Riefolo M, Lazzarotto T, et al. COVID-19 and the brain: the neuropathological Italian experience on 33 adult autopsies. Biomolecules. 2022;12(5). https://doi.org/10.3390/biom12050629 .
Schweitzer F, Goereci Y, Franke C, et al. Cerebrospinal fluid analysis post-COVID-19 is not suggestive of persistent central nervous system infection. Ann Neurol. 2022;91(1):150–7.
pubmed: 34724243
doi: 10.1002/ana.26262
Jarius S, Pache F, Körtvelyessy P, et al. Cerebrospinal fluid findings in COVID-19: a multicenter study of 150 lumbar punctures in 127 patients. J Neuroinflammation. 2022;19(1):19.
pubmed: 35057809
pmcid: 8771621
doi: 10.1186/s12974-021-02339-0
Frontera JA, Sabadia S, Lalchan R, et al. A prospective study of neurologic disorders in hospitalized patients with COVID-19 in New York city. Neurology. 2021;96(4):e575–e86.
pubmed: 33020166
pmcid: 7905791
doi: 10.1212/WNL.0000000000010979
Collaborators C‑MD. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet. 2021;398(10312):1700–12.
doi: 10.1016/S0140-6736(21)02143-7
Deer RR, Rock MA, Vasilevsky N, et al. Characterizing long COVID: deep phenotype of a complex condition. EBioMedicine. 2021;74:103722.
pubmed: 34839263
pmcid: 8613500
doi: 10.1016/j.ebiom.2021.103722
Berlit P, et al. Neurologische Manifestationen bei COVID-19, S1-Leitlinie. In: Deutsche Gesellschaft für Neurologie, Hrsg. Leitlinien für Diagnostik und Therapie in der Neurologie. 2021. www.dgn.org/leitlinien .
Keddie S, Pakpoor J, Mousele C, et al. Epidemiological and cohort study finds no association between COVID-19 and Guillain-Barré syndrome. Brain. 2020;144(2):682–93.
doi: 10.1093/brain/awaa433
Abu-Rumeileh S, Abdelhak A, Foschi M, Tumani H, Otto M. Guillain–Barré syndrome spectrum associated with COVID-19: an up-to-date systematic review of 73 cases. J Neurol. 2021;268(4):1133–70.
pubmed: 32840686
doi: 10.1007/s00415-020-10124-x
Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV‑2 is associated with changes in brain structure in UK Biobank. medRxiv 2021.2006.2011.21258690. 2022.
doi: 10.1038/s41586-022-04569-5
Marshall M. COVID and smell loss: answers begin to emerge. Nature. 2022;606(7915):631–2.
pubmed: 35681006
doi: 10.1038/d41586-022-01589-z
Ludwig B, Olbert E, Trimmel K, et al. Myalgic encephalomyelitis/chronic fatigue syndrome: an overview of current evidence. Nervenarzt. 2023; 1–9. https://doi.org/10.1007/s00115-022-01431-x .
Rass V, Beer R, Schiefecker AJ, et al. Neurological outcome and quality of life 3 months after COVID-19: a prospective observational cohort study. Eur J Neurol. 2021;28(10):3348–59.
pubmed: 33682276
pmcid: 8250725
doi: 10.1111/ene.14803
Hosp JA, Dressing A, Blazhenets G, et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain. 2021;144(4):1263–76.
pubmed: 33822001
doi: 10.1093/brain/awab009
Blazhenets G, Schröter N, Bormann T, et al. Slow but evident recovery from neocortical dysfunction and cognitive impairment in a series of chronic COVID-19 patients. J Nucl Med. 2021. https://doi.org/10.2967/jnumed.121.262128 .
Guedj E, Campion JY, Dudouet P, et al. (18)F-FDG brain PET hypometabolism in patients with long COVID. Eur J Nucl Med Mol Imaging. 2021;48(9):2823–33.
pubmed: 33501506
pmcid: 7837643
doi: 10.1007/s00259-021-05215-4
Kiatkittikul P, Promteangtrong C, Kunawudhi A, et al. Abnormality pattern of F‑18 FDG PET whole body with functional MRI brain in post-acute COVID-19. Nucl Med Mol Imaging. 2022;56(1):29–41.
pubmed: 35069924
pmcid: 8760088
doi: 10.1007/s13139-021-00730-6
Siripongsatian D, Kunawudhi A, Promteangtrong C, et al. Alterations in 18F-FDG PET/MRI and 15O-water PET brain findings in patients with neurological symptoms after COVID-19 vaccination: a pilot study. Clin Nucl Med. 2022;47(3):e230–e9.
pubmed: 35025789
pmcid: 8820745
doi: 10.1097/RLU.0000000000004041
Whiteside DM, Basso MR, Naini SM, et al. Outcomes in post-acute sequelae of COVID-19 (PASC) at 6 months post-infection part 1: cognitive functioning. Clin Neuropsychol. 2022;36(4):806–28.
pubmed: 35130818
doi: 10.1080/13854046.2022.2030412
Whiteside DM, Naini SM, Basso MR, et al. Outcomes in post-acute sequelae of COVID-19 (PASC) at 6 months post-infection part 2: psychological functioning. Clin Neuropsychol. 2022;36(4):829–47.
pubmed: 35098861
doi: 10.1080/13854046.2022.2030411
Kanberg N, Ashton NJ, Andersson LM, et al. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology. 2020;95(12):e1754–e9.
pubmed: 32546655
doi: 10.1212/WNL.0000000000010111
Kanberg N, Simrén J, Edén A, et al. Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up. EBioMedicine. 2021;70:103512.
pubmed: 34333238
pmcid: 8320425
doi: 10.1016/j.ebiom.2021.103512
Akıncı B, Oğul Ö, Hanoğlu L, et al. Evaluation of cognitive functions in adult individuals with COVID-19. Neurol Sci. 2023;44(3):793–802.
pubmed: 36574178
doi: 10.1007/s10072-022-06562-2
Therapists RCoO. Post-COVID Syndrome (Long Covid). https://www.rcot.co.uk/post-covid-syndrome-long-covid . Zugegriffen: 1. März 2023.
Watters K, Marks TS, Edwards DF, Skidmore ER, Giles GM. A framework for addressing clients’ functional cognitive deficits after COVID-19. Am J Occup Ther. 2021;75(Supplement_1):7511347010p1–7511347010p7.
pubmed: 34405800
doi: 10.5014/ajot.2021.049308
Sampaio Rocha-Filho PA. Headache associated with COVID-19: Epidemiology, characteristics, pathophysiology, and management. Headache. 2022;62(6):650–6.
pubmed: 35545780
pmcid: 9348060
doi: 10.1111/head.14319
Fernández-de-Las-Peñas C, Cuadrado ML, Gómez-Mayordomo V, García-Azorín D, Arendt-Nielsen L. Headache as a COVID-19 onset symptom or Post-COVID symptom according to the SARS-CoV‑2 Variant. Expert Rev Neurother. 2023;23(2):179–86.
pubmed: 36857191
doi: 10.1080/14737175.2023.2185138
Fernández-de-Las-Peñas C, Navarro-Santana M, Gómez-Mayordomo V, et al. Headache as an acute and post-COVID-19 symptom in COVID-19 survivors: A meta-analysis of the current literature. Eur J Neurol. 2021;28(11):3820–5.
pubmed: 34327787
pmcid: 8444899
doi: 10.1111/ene.15040
Al-Hashel JY, Abokalawa F, Alenzi M, Alroughani R, Ahmed SF. Coronavirus disease-19 and headache; impact on pre-existing and characteristics of de novo: a cross-sectional study. J Headache Pain. 2021;22(1):97.
pubmed: 34418950
pmcid: 8380111
doi: 10.1186/s10194-021-01314-7
Fernández-de-Las-Peñas C, Rodríguez-Jiménez J, Fuensalida-Novo S, et al. Myalgia as a symptom at hospital admission by severe acute respiratory syndrome coronavirus 2 infection is associated with persistent musculoskeletal pain as long-term post-COVID sequelae: a case-control study. PAIN. 2021;162(12):2832–2840. https://doi.org/10.1097/j.pain.0000000000002306 .
Oaklander AL, Mills AJ, Kelley M, et al. Peripheral neuropathy evaluations of patients with prolonged long COVID. Neurol Neuroimmunol Neuroinflamm. 2022;9(3). https://doi.org/10.1212/nxi.0000000000001146 .
Abrams RMC, Simpson DM, Navis A, Jette N, Zhou L, Shin SC. Small fiber neuropathy associated with SARS-CoV‑2 infection. Muscle Nerve. 2022;65(4):440–3.
pubmed: 34766365
doi: 10.1002/mus.27458
Del Brutto OH, Wu S, Mera RM, Costa AF, Recalde BY, Issa NP. Cognitive decline among individuals with history of mild symptomatic SARS-CoV‑2 infection: A longitudinal prospective study nested to a population cohort. Eur J Neurol. 2021. https://doi.org/10.1111/ene.14775 .
Graham EL, Clark JR, Orban ZS, et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 “long haulers”. Ann Clin Transl Neurol. 2021;8(5):1073–85.
pubmed: 33755344
pmcid: 8108421
doi: 10.1002/acn3.51350
Heuß D, et al. Diagnostik und Differenzialdiagnose bei Myalgien, S1-Leitlinie. In: Deutsche Gesellschaft für Neurologie, Hrsg. Leitlinien für Diagnostik und Therapie in der Neurologie. 2020. www.dgn.org/leitlinien .
Evans RA, McAuley H, Harrison EM, et al. Physical, cognitive and mental health impacts of COVID-19 following hospitalisation—a multi-centre prospective cohort study. medRxiv 2021.2003.2022.21254057. 2021.
Prüß H. Langzeitfolgen von COVID-19. https://www.neurodiem.at/news/langzeitfolgen-von-covid-19-5cTFQ5DN2eONaO9FrgZ191 . Zugegriffen: 10. Jan. 2023.
Saniasiaya J, Islam MA, Abdullah B. Prevalence of olfactory dysfunction in Coronavirus disease 2019 (COVID-19): a meta-analysis of 27,492 patients. Laryngoscope. 2021;131(4):865–78.
pubmed: 33219539
doi: 10.1002/lary.29286
Lucidi, D, Molinari, G, Silvestri, M, et al. Patient-reported olfactory recovery after SARS-CoV-2 infection: A 6-month follow-up study. Int Forum Allergy Rhinol. 2021;11:1249–1252. https://doi.org/10.1002/alr.22775 .
Doty RL. Olfactory dysfunction in COVID-19: pathology and long-term implications for brain health. Trends Mol Med. 2022;28(9):781–94.
pubmed: 35810128
pmcid: 9212891
doi: 10.1016/j.molmed.2022.06.005
Prem B, Liu DT, Besser G, et al. Long-lasting olfactory dysfunction in COVID-19 patients. Eur Arch Otorhinolaryngol. 2022;279(7):3485–92.
pubmed: 34757458
doi: 10.1007/s00405-021-07153-1
Liu DT, Sabha M, Damm M, et al. Parosmia is associated with relevant olfactory recovery after olfactory training. Laryngoscope. 2021;131(3):618–23.
pubmed: 33210732
doi: 10.1002/lary.29277
S2k-Leitlinie 017/050: Riech- und Schmeckstörungen. https://www.awmf.org/uploads/tx_szleitlinien/017-050l_S2k_Riech-und-Schmeckst%C3%B6rungen_2021-04.pdf . Zugegriffen: 28. Juni. 2021.
Cantarella G, Aldè M, Consonni D, et al. Prevalence of Dysphonia in non hospitalized patients with COVID-19 in Lombardy, the Italian epicenter of the pandemic. J Voice. 2021;37(4):605–609. https://doi.org/10.1016/j.jvoice.2021.03.009 .
Chadd K, Moyse K, Enderby P. Impact of COVID-19 on the speech and language therapy profession and their patients. Front Neurol. 2021;12(96). https://doi.org/10.3389/fneur.2021.629190 .
Dziewas R, Hufelschulte LM, Lepper J, et al. Dysphagia in patients with severe Coronavirus disease 2019-potential neurologic etiologies. Crit Care Explor. 2021;3(1):e332.
pubmed: 33521647
pmcid: 7837983
doi: 10.1097/CCE.0000000000000332
Aviv JE, Chandrasekhar S, Thomashow B. Covid-19 era post viral vagal neuropathy presenting as persistent shortness of breath with normal pulmonary imaging. Int J Pul Res Sci. 2020;4(4):555641. https://doi.org/10.19080/IJOPRS.2020.04.555641 .
doi: 10.19080/IJOPRS.2020.04.555641
Kiekens C, Boldrini P, Andreoli A, et al. Rehabilitation and respiratory management in the acute and early post-acute phase. “Instant paper from the field” on rehabilitation answers to the COVID-19 emergency. Eur J Phys Rehabil Med. 2020;56(3):323–6.
pubmed: 32293817
doi: 10.23736/S1973-9087.20.06305-4
Lechien JR, Chiesa-Estomba CM, Cabaraux P, et al. Features of mild-to-moderate COVID-19 patients with Dysphonia. J Voice. 2020;36(2)249–255. https://doi.org/10.1016/j.jvoice.2020.05.012 .
Brodsky MB, Gilbert RJ. The long-term effects of COVID-19 on Dysphagia evaluation and treatment. Arch Phys Med Rehabil. 2020;101(9):1662–4.
pubmed: 32534801
pmcid: 7286637
doi: 10.1016/j.apmr.2020.05.006
Patterson JM, Govender R, Roe J, et al. COVID-19 and ENT SLT services, workforce and research in the UK: a discussion paper. Int J Lang Commun Disord. 2020;55(5):806–17.
pubmed: 32770652
pmcid: 7436215
doi: 10.1111/1460-6984.12565
Mohan R, Mohapatra B. Shedding light on dysphagia associated with COVID-19: the what and why. OTO Open. 2020;4(2):2473974X20934770.
pubmed: 32551409
pmcid: 7281885
doi: 10.1177/2473974X20934770
Gorna R, MacDermott N, Rayner C, et al. Long COVID guidelines need to reflect lived experience. Lancet. 2021;397(10273):455–7.
pubmed: 33357467
doi: 10.1016/S0140-6736(20)32705-7
Archer SK, Iezzi CM, Gilpin L. Swallowing and voice outcomes in patients hospitalized with COVID-19: an observational cohort study. Arch Phys Med Rehabil. 2021;102(6):1084–90.
pubmed: 33529610
pmcid: 7846878
doi: 10.1016/j.apmr.2021.01.063
Kilic O, Kalcioglu MT, Cag Y, et al. Could sudden sensorineural hearing loss be the sole manifestation of COVID-19? An investigation into SARS-COV‑2 in the etiology of sudden sensorineural hearing loss. Int J Infect Dis. 2020;97:208–11.
pubmed: 32535294
pmcid: 7289736
doi: 10.1016/j.ijid.2020.06.023
Welge-Luessen A, Hummel T, Stojan T, Wolfensberger M. What is the correlation between ratings and measures of olfactory function in patients with olfactory loss? Am J Rhinol. 2005;19(6):567–71.
pubmed: 16402642
doi: 10.1177/194589240501900606
Mueller CA, Grassinger E, Naka A, Temmel AFP, Hummel T, Kobal G. A self-administered odor identification test procedure using the “Sniffin’ sticks”. Chem Senses. 2006;31(6):595–8.
pubmed: 16754696
doi: 10.1093/chemse/bjj064
Hummel T, Whitcroft KL, Andrews P, et al. Position paper on olfactory dysfunction. Rhinology. 2016;56(1):1–30.
pubmed: 28623665
Oleszkiewicz A, Schriever VA, Croy I, Hähner A, Hummel T. Updated Sniffin’ Sticks normative data based on an extended sample of 9139 subjects. Eur Arch Otorhinolaryngol. 2019;276(3):719–28.
pubmed: 30554358
doi: 10.1007/s00405-018-5248-1
Liu DT, Besser G, Renner B, Seyferth S, Hummel T, Mueller CA. Retronasal olfactory function in patients with smell loss but subjectively normal flavor perception. Laryngoscope. 2020;130(7):1629–33.
pubmed: 31471971
doi: 10.1002/lary.28258
Lopez-Leon S, Wegman-Ostrosky T, Perelman C, et al. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci Rep. 2021;11(1):16144.
pubmed: 34373540
pmcid: 8352980
doi: 10.1038/s41598-021-95565-8
Genovese G, Moltrasio C, Berti E, Marzano AV. Skin manifestations associated with COVID-19: current knowledge and future perspectives. Dermatology. 2021;237(1):1–12.
pubmed: 33232965
doi: 10.1159/000512932
FDA. Fact sheet for healthcare providers administering vaccine (vaccination providers). https://www.fda.gov/media/144413/download . Zugegriffen: 26. Juni 2021.
Tan SW, Tam YC, Oh CC. Skin manifestations of COVID-19: A worldwide review. JAAD Int. 2021;2:119–33.
pubmed: 33479703
doi: 10.1016/j.jdin.2020.12.003
Andrade SB, Siqueira S, de Assis Soares WR, et al. Long-COVID and post-COVID health complications: an up-to-date review on clinical conditions and their possible molecular mechanisms. Viruses. 2021;13(4). https://doi.org/10.3390/v13040700 .
Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–15.
pubmed: 33753937
pmcid: 8893149
doi: 10.1038/s41591-021-01283-z
McMahon DE, Gallman AE, Hruza GJ, et al. Long COVID in the skin: a registry analysis of COVID-19 dermatological duration. Lancet Infect Dis. 2021;21(3):313–4.
pubmed: 33460566
pmcid: 7836995
doi: 10.1016/S1473-3099(20)30986-5
Baeck M, Herman A. COVID toes: where do we stand with the current evidence? Int J Infect Dis. 2021;102:53–5.
pubmed: 33075530
doi: 10.1016/j.ijid.2020.10.021
Sahanic S, Tymoszuk P, Ausserhofer D, et al. Phenotyping of acute and persistent Coronavirus disease 2019 features in the outpatient setting: exploratory analysis of an international cross-sectional Online survey. Clin Infect Dis. 2022;75(1):e418–e31.
pubmed: 34849652
doi: 10.1093/cid/ciab978
Hüfner K, Tymoszuk P, Ausserhofer D, et al. Who is at risk of poor mental health following Coronavirus disease-19 outpatient management? Front Med. 2022;9:792881.
doi: 10.3389/fmed.2022.792881
Wang S, Quan L, Chavarro JE, et al. Associations of depression, anxiety, worry, perceived stress, and loneliness prior to infection with risk of post-COVID-19 conditions. JAMA Psychiatry. 2022;79(11):1081–91.
pubmed: 36069885
pmcid: 9453634
doi: 10.1001/jamapsychiatry.2022.2640
Korompoki E, Gavriatopoulou M, Hicklen RS, et al. Epidemiology and organ specific sequelae of post-acute COVID19: a narrative review. J Infect. 2021;83(1):1–16.
pubmed: 33992686
pmcid: 8118709
doi: 10.1016/j.jinf.2021.05.004
Méndez R, Balanzá-Martínez V, Luperdi SC, et al. Short-term neuropsychiatric outcomes and quality of life in COVID-19 survivors. J Intern Med. 2021. https://doi.org/10.1111/joim.13262 .
Mazza MG, Palladini M, De Lorenzo R, et al. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: effect of inflammatory biomarkers at three-month follow-up. Brain Behav Immun. 2021;94:138–47.
pubmed: 33639239
pmcid: 7903920
doi: 10.1016/j.bbi.2021.02.021
Pilotto A, Cristillo V, Piccinelli SC, et al. COVID-19 severity impacts on long-term neurological manifestation after hospitalisation. medRxiv 2020.2012.2027.20248903. 2021.
Jebrini T, Reinhard MA, Ortmann M, et al. Psychiatric complications of COVID-19: The unknown disease (Long Covid). MMW Fortschr Med. 2021;163(9):48–50.
pubmed: 33961259
pmcid: 8103131
doi: 10.1007/s15006-021-9888-5
Jimeno-Almazán A, Pallarés JG, Buendía-Romero Á, et al. Post-COVID-19 syndrome and the potential benefits of exercise. Int J Environ Res Public Health. 2021;18(10). https://doi.org/10.3390/ijerph18105329 .
Sisó-Almirall A, Brito-Zerón P, Conangla Ferrín L, et al. Long Covid-19: proposed primary care clinical guidelines for diagnosis and disease management. Int J Environ Res Public Health. 2021;18(8). https://doi.org/10.3390/ijerph18084350 .
Benedetti F, Mazza M, Cavalli G, Ciceri F, Dagna L, Rovere-Querini P. Can cytokine blocking prevent depression in COVID-19 survivors? J Neuroimmune Pharmacol. 2021;16(1):1–3.
pubmed: 33107012
doi: 10.1007/s11481-020-09966-z
de Lorenzo R, Cinel E, Cilla M, et al. Physical and psychological sequelae at three months after acute illness in COVID-19 survivors. Panminerva Med. 2021. https://doi.org/10.23736/s0031-0808.21.04399-8 .
Löwe B, Andresen V, Van den Bergh O, et al. Persistent SOMAtic symptoms ACROSS diseases—from risk factors to modification: scientific framework and overarching protocol of the interdisciplinary SOMACROSS research unit (RU 5211). BMJ Open. 2022;12(1):e57596.
pubmed: 35063961
pmcid: 8785206
doi: 10.1136/bmjopen-2021-057596
Sahanic S, Tymoszuk P, Luger AK, et al. COVID-19 and its continuing burden after 12 months: a longitudinal observational prospective multicentre trial. ERJ Open Res. 2023;9(2). https://doi.org/10.1183/23120541.00317-2022 .
Lai YJ, Liu SH, Manachevakul S, Lee TA, Kuo CT, Bello D. Biomarkers in long COVID-19: A systematic review. Front Med. 2023;10:1085988.
doi: 10.3389/fmed.2023.1085988
Astin R, Banerjee A, Baker MR, et al. Long COVID: mechanisms, risk factors and recovery. Exp Physiol. 2023;108(1):12–27.
pubmed: 36412084
doi: 10.1113/EP090802
Pretorius E, Venter C, Laubscher GJ, et al. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/Post-Acute Sequelae of COVID-19 (PASC). Cardiovasc Diabetol. 2022;21(1):148.
pubmed: 35933347
pmcid: 9356426
doi: 10.1186/s12933-022-01579-5
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J. 2022;479(16):1653–708.
pubmed: 36043493
doi: 10.1042/BCJ20220154
Ferrucci R, Cuffaro L, Capozza A, et al. Brain positron emission tomography (PET) and cognitive abnormalities one year after COVID-19. J Neurol. 2023;270(4):1823–34.
pubmed: 36692636
pmcid: 9873215
doi: 10.1007/s00415-022-11543-8
Nikesjö F, Sayyab S, Karlsson L, et al. Defining post-acute COVID-19 syndrome (PACS) by an epigenetic biosignature in peripheral blood mononuclear cells. Clin Epigenetics. 2022;14(1):172.
pubmed: 36517875
pmcid: 9748378
doi: 10.1186/s13148-022-01398-1
Hüfner K, Tymoszuk P, Sahanic S, et al. Persistent somatic symptoms are key to individual illness perception at one year after COVID-19 in a cross-sectional analysis of a prospective cohort study. J Psychosom Res. 2023;169:111234.
pubmed: 36965396
pmcid: 10022460
doi: 10.1016/j.jpsychores.2023.111234
Sonnweber T, Grubwieser P, Sahanic S, et al. The impact of iron Dyshomeostasis and anaemia on long-term pulmonary recovery and persisting symptom burden after COVID-19: a prospective observational cohort study. Metabolites. 2022;12(6). https://doi.org/10.3390/metabo12060546 .
Hüfner K, Tymoszuk P, Sahanic S, et al. Persistent somatic symptoms are key to individual illness perception at one year after COVID-19. medRxiv 2022.2009.2005.22279602. 2022.
doi: 10.1101/2022.09.05.22279602
Saunders C, Sperling S, Bendstrup E. A new paradigm is needed to explain long COVID. Lancet Respir Med. 2023;11(2):e12–e3.
pubmed: 36620963
doi: 10.1016/S2213-2600(22)00501-X
S3 Leitlinie „Funktionelle Körperbeschwerden“. https://register.awmf.org/assets/guidelines/051-001l_S3_Funktionelle_Koerperbeschwerden_2018-11.pdf . Zugegriffen: 19. März 2023.
Health PRUWCCiM. WHO (Fünf) – Fragebogen zum Wohlbefinden (Version 1998). https://www.psykiatri-regionh.dk/who-5/Documents/WHO5_German.pdf . Zugegriffen: 20. Juli 2021.
GAD‑2. https://de.wikipedia.org/wiki/GAD-2#/media/Datei:GAD-2.tif . Zugegriffen: 20. Juli 2021.
I S, C S. Deutsche Version des „Primary Care Posttraumatic Stress Disorder screening questionnaire“. Universität Hamburg. 2021.
Baumgartner JS, Jahn R, Friedrich F, Alexandrowicz RW, Wancata J. Die Kriteriumsvalidität der 15-Item Geriatrischen Depressionsskala in der österreichischen Bevölkerung. Psychiatr Prax. 2019;46(04):206–12.
pubmed: 30641611
doi: 10.1055/a-0822-7578
Alexandrowicz R, Weiss M, Marquart B, Wancata J. Zur Validität eines zweistufigen Screenings am Beispiel des Depressionsscreening. Psychiatr Prax. 2008;35(06):294–301.
pubmed: 18504689
doi: 10.1055/s-2008-1067335
Sapra A, Bhandari P. Chronic fatigue syndrome. In: StatPearls. Bd. 2021. Treasure Island: StatPearls Publishing; 2021.
Cairns R, Hotopf M. A systematic review describing the prognosis of chronic fatigue syndrome. Occup Med. 2005;55(1):20–31.
doi: 10.1093/occmed/kqi013
Poenaru S, Abdallah SJ, Corrales-Medina V, Cowan J. COVID-19 and post-infectious myalgic encephalomyelitis/chronic fatigue syndrome: a narrative review. Ther Adv Infect Dis. 2021;8:20499361211009385.
pubmed: 33959278
pmcid: 8060761
Götzinger F, Santiago-García B, Noguera-Julián A, et al. COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study. Lancet Child Adolesc Health. 2020;4(9):653–61.
pubmed: 32593339
pmcid: 7316447
doi: 10.1016/S2352-4642(20)30177-2
Dong Y, Mo X, Hu Y, et al. Epidemiology of COVID-19 among children in China. Pediatrics. 2020;145(6). https://doi.org/10.1542/peds.2020-0702 .
Buonsenso D, Roland D, De Rose C, et al. Schools closures during the COVID-19 pandemic: a catastrophic global situation. Pediatr Infect Dis J. 2021;40(4):e146–e50.
pubmed: 33464019
doi: 10.1097/INF.0000000000003052
Buonsenso D, Munblit D, De Rose C, et al. Preliminary evidence on long COVID in children. Acta Paediatr. 2021;110(7):2208–11.
pubmed: 33835507
pmcid: 8251440
doi: 10.1111/apa.15870
Ludvigsson JF. Case report and systematic review suggest that children may experience similar long-term effects to adults after clinical COVID-19. Acta Paediatr. 2021;110(3):914–21.
pubmed: 33205450
doi: 10.1111/apa.15673
Molteni E, Sudre CH, Canas LS, et al. Illness duration and symptom profile in symptomatic UK school-aged children tested for SARS-CoV‑2. Lancet Child Adolesc Health. 2021. https://doi.org/10.1016/s2352-4642(21)00198-x .
Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020;395(10237):1607–8.
pubmed: 32386565
pmcid: 7204765
doi: 10.1016/S0140-6736(20)31094-1
Whittaker E, Bamford A, Kenny J, et al. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-coV‑2. JAMA. 2020;324(3):259–69.
pubmed: 32511692
pmcid: 7281356
doi: 10.1001/jama.2020.10369
Consiglio CR, Cotugno N, Sardh F, et al. The immunology of multisystem inflammatory syndrome in children with COVID-19. Cell. 2020;183(4):968–981.e7.
pubmed: 32966765
pmcid: 7474869
doi: 10.1016/j.cell.2020.09.016
WHO. Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19. https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19 . Zugegriffen: 24. Jan. 2023.
Rubens JH, Akindele NP, Tschudy MM, Sick-Samuels AC. Acute covid-19 and multisystem inflammatory syndrome in children. BMJ. 2021;372:n385.
pubmed: 33648933
doi: 10.1136/bmj.n385
Feleszko W, Okarska-Napierała M, Buddingh EP, et al. Pathogenesis, immunology, and immune-targeted management of the multisystem inflammatory syndrome in children (MIS-C) or pediatric inflammatory multisystem syndrome (PIMS): EAACI Position Paper. Pediatr Allergy Immunol. 2023;34(1):e13900.
pubmed: 36705045
doi: 10.1111/pai.13900
Harwood R, Allin B, Jones CE, et al. A national consensus management pathway for paediatric inflammatory multisystem syndrome temporally associated with COVID-19 (PIMS-TS): results of a national Delphi process. Lancet Child Adolesc Health. 2021;5(2):133–41.
pubmed: 32956615
doi: 10.1016/S2352-4642(20)30304-7
Schlapbach LJ, Andre MC, Grazioli S, et al. Best practice recommendations for the diagnosis and management of children with pediatric inflammatory multisystem syndrome temporally associated with SARS-coV‑2 (PIMS-TS; Multisystem inflammatory syndrome in children, MIS-C) in Switzerland. Front Pediatr. 2021;9:667507. https://doi.org/10.3389/fped.2021.667507 .
doi: 10.3389/fped.2021.667507
pubmed: 34123970
pmcid: 8187755
Sokolowska M, Lukasik ZM, Agache I, et al. Immunology of COVID-19: Mechanisms, clinical outcome, diagnostics, and perspectives—A report of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy. 2020;75(10):2445–76.
pubmed: 32584441
doi: 10.1111/all.14462
Ren X, Wen W, Fan X, et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell. 2021;184(7):1895–1913.e9.
pubmed: 33657410
pmcid: 7857060
doi: 10.1016/j.cell.2021.01.053
Kedor C, Freitag H, Meyer-Arndt L, et al. A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity. Nat Commun. 2022;13(1):5104.
pubmed: 36042189
pmcid: 9426365
doi: 10.1038/s41467-022-32507-6
Lutz L, Rohrhofer J, Zehetmayer S, Stingl M, Untersmayr E. Evaluation of immune dysregulation in an Austrian patient cohort suffering from myalgic encephalomyelitis/chronic fatigue syndrome. Biomolecules. 2021;11(9). https://doi.org/10.3390/biom11091359 .
Sepulcri C, Dentone C, Mikulska M, et al. The longest persistence of viable SARS-coV‑2 with recurrence of Viremia and relapsing symptomatic COVID-19 in an immunocompromised patient—A case study. Open Forum Infect Dis. 2021;8(11):ofab217.
pubmed: 34796242
pmcid: 8135455
doi: 10.1093/ofid/ofab217
Gaebler C, Wang Z, Lorenzi JCC, et al. Evolution of antibody immunity to SARS-CoV‑2. Nature. 2021;591(7851):639–44.
pubmed: 33461210
pmcid: 8221082
doi: 10.1038/s41586-021-03207-w
Stein SR, Ramelli SC, Grazioli A, et al. SARS-CoV‑2 infection and persistence in the human body and brain at autopsy. Nature. 2022;612(7941):758–63.
pubmed: 36517603
pmcid: 9749650
doi: 10.1038/s41586-022-05542-y
Zollner A, Koch R, Jukic A, et al. Postacute COVID-19 is characterized by gut viral antigen persistence in inflammatory bowel diseases. Gastroenterology. 2022;163(2):495–506.e8.
pubmed: 35508284
doi: 10.1053/j.gastro.2022.04.037
Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515). https://doi.org/10.1126/science.abd4585 .
Wang EY, Mao T, Klein J, et al. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021;595(7866):283–8.
pubmed: 34010947
doi: 10.1038/s41586-021-03631-y
Wallukat G, Hohberger B, Wenzel K, et al. Functional autoantibodies against G‑protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J Transl Autoimmun. 2021;4:100100.
pubmed: 33880442
pmcid: 8049853
doi: 10.1016/j.jtauto.2021.100100
Freitag H, Szklarski M, Lorenz S, et al. Autoantibodies to vasoregulative G‑protein-coupled receptors correlate with symptom severity, autonomic dysfunction and disability in myalgic encephalomyelitis/chronic fatigue syndrome. J Clin Med. 2021;10(16). https://doi.org/10.3390/jcm10163675 .
Sotzny F, Filgueiras IS, Kedor C, et al. Dysregulated autoantibodies targeting vaso- and immunoregulatory receptors in Post COVID Syndrome correlate with symptom severity. Front Immunol. 2022;13:981532.
pubmed: 36238301
pmcid: 9552223
doi: 10.3389/fimmu.2022.981532
Yu X, Li H, Murphy TA, et al. Angiotensin II type 1 receptor autoantibodies in postural tachycardia syndrome. J Am Heart Assoc. 2018;7(8). https://doi.org/10.1161/JAHA.117.008351 .
Ahearn-Ford S, Lunjani N, McSharry B, et al. Long-term disruption of cytokine signalling networks is evident in patients who required hospitalization for SARS-CoV‑2 infection. Allergy. 2021;76(9):2910–3.
pubmed: 34028045
doi: 10.1111/all.14953
Merad M, Blish CA, Sallusto F, Iwasaki A. The immunology and immunopathology of COVID-19. Science. 2022;375(6585):1122–7.
pubmed: 35271343
doi: 10.1126/science.abm8108
Vultaggio A, Agache I, Akdis CA, et al. Considerations on biologicals for patients with allergic disease in times of the COVID-19 pandemic: An EAACI statement. Allergy. 2020;75(11):2764–74.
pubmed: 32500526
doi: 10.1111/all.14407
Weinstock LB, Brook JB, Walters AS, Goris A, Afrin LB, Molderings GJ. Mast cell activation symptoms are prevalent in Long-COVID. Int J Infect Dis. 2021;112:217–26.
pubmed: 34563706
pmcid: 8459548
doi: 10.1016/j.ijid.2021.09.043
Wechsler JB, Butuci M, Wong A, Kamboj AP, Youngblood BA. Mast cell activation is associated with post-acute COVID-19 syndrome. Allergy. 2022;77(4):1288–91.
pubmed: 34820848
doi: 10.1111/all.15188
Valent P, Akin C, Bonadonna P, et al. Proposed diagnostic algorithm for patients with suspected mast cell activation syndrome. J Allergy Clin Immunol Pract. 2019;7(4):1125–1133.e1.
pubmed: 30737190
pmcid: 6643056
doi: 10.1016/j.jaip.2019.01.006
Valent P, Akin C, Hartmann K, et al. Updated diagnostic criteria and classification of mast cell disorders: a consensus proposal. Hemasphere. 2021;5(11):e646.
pubmed: 34901755
pmcid: 8659997
doi: 10.1097/HS9.0000000000000646
Weiler CR, Austen KF, Akin C, et al. AAAAI mast cell disorders committee work group report: mast cell activation syndrome (MCAS) diagnosis and management. J Allergy Clin Immunol. 2019;144(4):883–96.
pubmed: 31476322
doi: 10.1016/j.jaci.2019.08.023
Renz-Polster H, Scheibenbogen C. Wenn COVID nicht aufhört: Post-COVID-Verläufe mit Fatigue und Belastungsintoleranz. Dtsch Med Wochenschr. 2022;147(20):1320–30.
pubmed: 36195090
doi: 10.1055/a-1849-8953
Prevalence of ongoing symptoms following coronavirus (COVID-19) infection in the UK: 30 March 2023. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/prevalenceofongoingsymptomsfollowingcoronaviruscovid19infectionintheuk/30march2023 . Zugegriffen: 30. März 2023.
Long-term symptoms in Canadian adults who tested positive for COVID-19 or suspected an infection, January 2020 to August 2022. https://www150.statcan.gc.ca/n1/daily-quotidien/221017/dq221017b-eng.htm . Zugegriffen: 16. Februar 2023.
Holl FCW, Resch T, Partheymüller J. Long Covid in Österreich: Häufigkeit und Symptome. 2022. https://viecer.univie.ac.at/corona-blog/corona-blog-beitraege/blog-154-long-covid-in-oesterreich-haeufigkeit-und-symptome/ . Zugegriffen: 16. Februar 2023.
Islam MF, Cotler J, Jason LA. Post-viral fatigue and COVID-19: lessons from past epidemics. Fatigue: Biomed Health Behav. 2020;8(2):61–9.
Hejbøl EK, Harbo T, Agergaard J, et al. Myopathy as a cause of fatigue in long-term post-COVID-19 symptoms: Evidence of skeletal muscle histopathology. Eur J Neurol. 2022;29(9):2832–41.
pubmed: 35661354
doi: 10.1111/ene.15435
van Campen CLMC, Verheugt FWA, Rowe PC, Visser FC. Cerebral blood flow is reduced in ME/CFS during head-up tilt testing even in the absence of hypotension or tachycardia: A quantitative, controlled study using Doppler echography. Clin Neurophysiol Pract. 2020;5:50–8.
pubmed: 32140630
doi: 10.1016/j.cnp.2020.01.003
Stevens S, Snell C, Stevens J, Keller B, VanNess JM. Cardiopulmonary exercise test methodology for assessing exertion intolerance in myalgic encephalomyelitis/chronic fatigue syndrome. Front Pediatr. 2018;6:242.
pubmed: 30234078
pmcid: 6131594
doi: 10.3389/fped.2018.00242
Uta B. Screening auf Post-Exertionelle-Malaise (PEM) Fragebogen. https://cfc.charite.de/fileadmin/user_upload/microsites/kompetenzzentren/cfc/Landing_Page/DSQ-PEM_TUM.pdf (Erstellt: 4. Sept. 2021). Zugegriffen: 20. Jan. 2023.
S2k-LL SARS-CoV‑2, COVID-19 und (Früh‑) Rehabilitation, S2k-Leitlinie („Living guideline“). https://register.awmf.org/assets/guidelines/080-008l_S2k_SARS-CoV-2_COVID-19_und_Frueh-_Rehabilitation_2022-11.pdf . Zugegriffen: 19. März 2023.
National Institute for Health and Care Excellence SIGNaRCoGP. COVID-19 rapid guideline: managing the long-term effects of COVID-19. 2020.
Costa U,Einzigartigkeit macht es aus: Ergotherapie für Menschen „postCovid“. Annual Meeting Ergotherapie Austria. Innsbruck (Austria)11. März 2022.
Sperl LCU. Long‑/Post COVID Anhaltende Symptome bei Personen nach einer COVID-19 Infektion. Ergotherapie. 2022;2:36–7.
Theoharides TC. Potential association of mast cells with coronavirus disease 2019. Ann Allergy Asthma Immunol. 2021;126(3):217–8.
pubmed: 33161155
doi: 10.1016/j.anai.2020.11.003
Fancourt D, Steptoe A, Bu F. Psychological consequences of long COVID: comparing trajectories of depressive and anxiety symptoms before and after contracting SARS-CoV‑2 between matched long- and short-COVID groups. Br J Psychiatry. 2023 Feb;222(2):74-81. doi: 10.1192/bjp.2022.155.
Kedor C, Freitag H, Meyer-Arndt L, et al. Chronic COVID-19 Syndrome and Chronic Fatigue Syndrome (ME/CFS) following the first pandemic wave in Germany—a first analysis of a prospective observational study. medRxiv 2021.2002.2006.21249256. 2021.
doi: 10.1101/2021.02.06.21249256
Hersche R, Weise A. Occupational therapy-based energy management education in people with post-COVID-19 condition-related fatigue: results from a focus group discussion. Occup Ther Int. 2022;2022:4590154.
pubmed: 35521629
pmcid: 9023185
doi: 10.1155/2022/4590154
Bourmaud A, Anota A, Moncharmont C, et al. Cancer-related fatigue management: evaluation of a patient education program with a large-scale randomised controlled trial, the PEPs fatigue study. Br J Cancer. 2017;116(7):849–58.
pubmed: 28196066
pmcid: 5379143
doi: 10.1038/bjc.2017.31
Gesellschaft DF. Ursachen. https://deutsche-fatigue-gesellschaft.de/fatigue/ursachen/ . Zugegriffen: 19. März 2023.
Reis Carneiro D, Rocha I, Habek M, et al. Clinical presentation and management strategies of cardiovascular autonomic dysfunction following a COVID-19 infection—A systematic review. Eur J Neurol. 2023. https://doi.org/10.1111/ene.15714 .
Raj SR, Arnold AC, Barboi A, et al. Long-COVID postural tachycardia syndrome: an American Autonomic Society statement. Clin Auton Res. 2021;31(3):365–8.
pubmed: 33740207
pmcid: 7976723
doi: 10.1007/s10286-021-00798-2
Raj SR, Guzman JC, Harvey P, et al. Canadian Cardiovascular Society position statement on postural Orthostatic tachycardia syndrome (POTS) and related disorders of chronic orthostatic intolerance. Can J Cardiol. 2020;36(3):357–72.
pubmed: 32145864
doi: 10.1016/j.cjca.2019.12.024
Raj SR, Fedorowski A, Sheldon RS. Diagnosis and management of postural orthostatic tachycardia syndrome. CMAJ. 2022;194(10):E378–E85.
pubmed: 35288409
pmcid: 8920526
doi: 10.1503/cmaj.211373
Feldman EL, Russell JW, Löscher WN, Grisold W. Atlas of neuromuscular diseases A practical guideline. Vienna: Springer-Verlag Wien 2014.
Fanciulli A, Campese N, Wenning GK. The Schellong test: detecting orthostatic blood pressure and heart rate changes in German-speaking countries. Clin Auton Res. 2019;29(4):363–6.
pubmed: 31273549
doi: 10.1007/s10286-019-00619-7
Brignole M, Moya A, de Lange FJ, et al. 2018 ESC Guidelines for the diagnosis and management of syncope. Eur Heart J. 2018;39(21):1883–948.
pubmed: 29562304
doi: 10.1093/eurheartj/ehy037
Norcliffe-Kaufmann L, Palma JA, Kaufmann H. A validated test for neurogenic orthostatic hypotension at the bedside. Ann Neurol. 2018;84(6):959–60.
pubmed: 30341962
pmcid: 6396675
doi: 10.1002/ana.25362
Thijs RD, Brignole M, Falup-Pecurariu C, et al. Recommendations for tilt table testing and other provocative cardiovascular autonomic tests in conditions that may cause transient loss of consciousness : Consensus statement of the European Federation of Autonomic Societies (EFAS) endorsed by the American Autonomic Society (AAS) and the European Academy of Neurology (EAN). Clin Auton Res. 2021;31(3):369–84.
pubmed: 33740206
pmcid: 8184725
doi: 10.1007/s10286-020-00738-6
Greenhalgh T, Sivan M, Delaney B, Evans R, Milne R. Long covid—an update for primary care. BMJ. 2022;378:e72117.
pubmed: 36137612
doi: 10.1136/bmj-2022-072117
Guide P‑ACTP, Affairs USDoV. Whole-Health-System-Approach-to-Long-COVID_080122_FINAL. https://www.publichealth.va.gov/n-coronavirus/docs/Whole-Health-System-Approach-to-Long-COVID_080122_FINAL.pdf . Zugegriffen: 10. Febr. 2023.
Informationen zu Long COVID für Bevölkerung, Betroffene und Fachpersonal. https://www.sozialministerium.at/Corona/allgemeine-informationen/long-covid.html#versorgung-von-long-covid-betroffenen . Zugegriffen: 14. März 2023.
Deutsche Gesellschaft für Allgemeinmedizin und Familienmedizin. Fachdefinition DEGAM. https://www.degam.de/fachdefinition . Zugegriffen: 19. März 2023.
WONCA. The European Definition of GP / FM. https://www.woncaeurope.org/page/definition-of-general-practice-family-medicine . Zugegriffen: 19. März 2023.
Berger Z, Altiery DE, Jesus V, Assoumou SA, Greenhalgh T. Long COVID and health inequities: the role of primary care. Milbank Q. 2021;99(2):519–41.
pubmed: 33783907
pmcid: 8241274
doi: 10.1111/1468-0009.12505
Eine Leitlinie „Long/Post-COVID-Syndrom“ für Betroffene, Angehörige, nahestehende und pflegende Personen, die sich auf eine ärztliche Leitlinie stützt („S1-Leitlinie Long‑/Post-COVID“ der AWMF; Registernummer 020-027). https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwitkOnn_oj-AhVFNOwKHUiOBCAQFnoECAkQAQ&url=https%3A%2F%2Fregister.awmf.org%2Fassets%2Fguidelines%2F020-027p_S1_Post_COVID_Long_COVID_2023-02.pdf&usg=AOvVaw37Poiht4r9oqe9fDHY-a_A . Zugegriffen: 2. März 2023.
Rabady S, Altenberger J, Brose M, et al. Leitlinie S1: Long COVID: Differenzialdiagnostik und Behandlungsstrategien. Wien Klin Wochenschr. 2021;133(7):237–78.
pubmed: 34851455
pmcid: 8633909
doi: 10.1007/s00508-021-01974-0
Vance H, Maslach A, Stoneman E, et al. Addressing post-COVID symptoms: a guide for primary care physicians. J Am Board Fam Med. 2021;34(6):1229–42.
pubmed: 34772779
doi: 10.3122/jabfm.2021.06.210254
Prevention CCfDCa. Post-COVID conditions: information for healthcare providers. https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/post-covid-conditions.html . Zugegriffen: 19. März 2023.
Screening auf Post-Exertionelle-Malaise (PEM) – Fragebogen. https://cfc.charite.de/fileadmin/user_upload/microsites/kompetenzzentren/cfc/Landing_Page/DSQ-PEM_TUM.pdf . Zugegriffen: 19. März 2023.
Roenneberg C, Sattel H, Schaefert R, Henningsen P, Hausteiner-Wiehle C. Functional somatic symptoms. Dtsch Ärztebl Int. 2019;116(33–34):553–60.
pubmed: 31554544
pmcid: 6794707
Shah W, Hillman T, Playford ED, Hishmeh L. Managing the long term effects of covid-19: summary of NICE, SIGN, and RCGP rapid guideline. BMJ. 2021;372:n136.
pubmed: 33483331
doi: 10.1136/bmj.n136
Do TP, Remmers A, Schytz HW, et al. Red and orange flags for secondary headaches in clinical practice: SNNOOP10 list. Neurology. 2019;92(3):134–44.
pubmed: 30587518
pmcid: 6340385
doi: 10.1212/WNL.0000000000006697
Blomberg B, Mohn KG‑I, Brokstad KA, et al. Long COVID in a prospective cohort of home-isolated patients. Nat Med. 2021. https://doi.org/10.1038/s41591-021-01433-3 .
Krüger K, Gehrke-Beck S, Holzinger F, Heintze C. DEGAM Leitlinie Husten, Kurzversion. 2021.
DEGAM. DEGAM-Leitlinien. https://www.degam.de/degam-leitlinien-379 . Zugegriffen: 19. März 2023.
2023 Mini-Cog(c). Quick Screening for Early Dementia Detection. https://mini-cog.com/ . Zugegriffen: 23.03.2023.
Abholz H, Jendyk R. DEGAM Leitlinie “Akuter Schwindel”, Kurzversion. 2016.
al. DRe. Synkopen, S1-Leitlinie, 2020, in: Deutsche Gesellschaft für Neurologie (Hrsg.), Leitlinien für Diagnostik und Therapie in der Neurologie. www.dgn.org/leitlinien . Accessed 25. Jan. 2023.
Deutsche Gesellschaft für Allgemeinmedizin und Familienmedizin. Insomnie bei Erwachsenen – DEGAM-Anwenderversion zur S3 Leitlinie „Nicht erholsamer Schlaf/Schlafstörungen“. Berlin: DEGAM; 2017.
Deutsche Gesellschaft für Schlafforschung und Schlafmedizin. S3-Leitlinie Nicht erholsamer Schlaf/Schlafstörungen – Schlafbezogene Atmungsstörungen. 2016.
Fawzy NA, Abou Shaar B, Taha RM, Arabi TZ, Sabbah BN, Alkodaymi MS, Omrani OA, Makhzoum T, Almahfoudh NE, Al-Hammad QA, Hejazi W, Obeidat Y, Osman N, Al-Kattan KM, Berbari EF, Tleyjeh IM. A systematic review of trials currently investigating therapeutic modalities for post-acute COVID-19 syndrome and registered on WHO International Clinical Trials Platform. Clin Microbiol Infect. 2023;29(5):570–7. https://doi.org/10.1016/j.cmi.2023.01.007 .
doi: 10.1016/j.cmi.2023.01.007
pubmed: 36642173
pmcid: 9837206
World Health O. Clinical management of COVID-19: living guideline. 2023.
Dixit NM, Churchill A, Nsair A, Hsu JJ. Post-Acute COVID-19 Syndrome and the cardiovascular system: What is known? Am Heart J Plus. 2021;5:100025.
pubmed: 34192289
pmcid: 8223036
Abonie US, Edwards AM, Hettinga FJ. Optimising activity pacing to promote a physically active lifestyle in medical settings: a narrative review informed by clinical and sports pacing research. J Sports Sci. 2020;38(5):590–6.
pubmed: 31997716
doi: 10.1080/02640414.2020.1721254
World Physiotherapy briefing paper focuses on safe rehabilitation for people living with Long COVID. https://world.physio/news/world-physiotherapy-briefing-paper-focuses-safe-rehabilitation-people-living-long-covid . Zugegriffen: 26. Februar 2023.
Puchner B, Sahanic S, Kirchmair R, et al. Beneficial effects of multi-disciplinary rehabilitation in postacute COVID-19: an observational cohort study. Eur J Phys Rehabil Med. 2021;57(2):189–98.
pubmed: 33448756
doi: 10.23736/S1973-9087.21.06549-7
Parkin A, Davison J, Tarrant R, et al. A multidisciplinary NHS COVID-19 service to manage post-COVID-19 syndrome in the community. J Prim Care Community Health. 2021;12:21501327211010994.
pubmed: 33880955
pmcid: 8064663
doi: 10.1177/21501327211010994
Eschlböck S, Wenning G, Fanciulli A. Evidence-based treatment of neurogenic orthostatic hypotension and related symptoms. J Neural Transm. 2017;124(12):1567–605.
pubmed: 29058089
doi: 10.1007/s00702-017-1791-y
Fanciulli A, Jordan J, Biaggioni I, et al. Consensus statement on the definition of neurogenic supine hypertension in cardiovascular autonomic failure by the American Autonomic Society (AAS) and the European Federation of Autonomic Societies (EFAS) : Endorsed by the European Academy of Neurology (EAN) and the European Society of Hypertension (ESH). Clin Auton Res. 2018;28(4):355–62.
pubmed: 29766366
pmcid: 6097730
doi: 10.1007/s10286-018-0529-8
Struhal WHL, Fanciulli A, Wenning GK. Bedside approach to autonomic disorders. Cham: Springer; 2017.
doi: 10.1007/978-3-319-05143-7
Damm M, Pikart LK, Reimann H, et al. Olfactory training is helpful in postinfectious olfactory loss: A randomized, controlled, multicenter study. Laryngoscope. 2014;124(4):826–31.
pubmed: 23929687
doi: 10.1002/lary.24340
Altundag A, Cayonu M, Kayabasoglu G, et al. Modified olfactory training in patients with postinfectious olfactory loss. Laryngoscope. 2015;125(8):1763–6.
doi: 10.1002/lary.25245
Liu DT, Pellegrino R, Sabha M, et al. Factors associated with relevant olfactory recovery after olfactory training: a retrospective study including 601 participants. Rhinology. 2020. https://doi.org/10.4193/Rhin20.262 .
Dinc AS, Sengezer T, Cayonu M, Sahin MM. Smoking cessation improves olfactory functions. Laryngoscope. 2020;130(2):E35–E8.
pubmed: 30953390
doi: 10.1002/lary.27992
Pence TS, Reiter ER, DiNardo LJ, Costanzo RM. Risk factors for hazardous events in olfactory-impaired patients. JAMA Otolaryngol Head Neck Surg. 2014;140(10):951–5.
pubmed: 25170573
doi: 10.1001/jamaoto.2014.1675
Microbiology NR. Table 1 Summary of candidate treatments and supporting evidence. https://www.nature.com/articles/s41579-022-00846-2/tables/1 . Zugegriffen: 19. März 2023.
Salman D, Vishnubala D, Le Feuvre P, et al. Returning to physical activity after covid-19. BMJ. 2021;372:m4721.
pubmed: 33419740
doi: 10.1136/bmj.m4721
Sivan M, Rayner C, Delaney B. Fresh evidence of the scale and scope of long covid. BMJ. 2021;373:n853.
pubmed: 33795224
doi: 10.1136/bmj.n853
Klok FA, Boon G, Barco S, et al. The Post-COVID-19 Functional Status scale: a tool to measure functional status over time after COVID-19. Eur Respir J. 2020;56(1). https://doi.org/10.1183/13993003.01494-2020 .
Scharhag J, Niebauer J, Schobersberger W. „Return to Sports“ im (Hoch‑)Leistungssport nach COVID-19. Konsensus der sportmedizinischen Universitäts- und Landesinstitute Wien, Salzburg und Innsbruck. https://salk.at/DMS/Konsens%20RTP%20Covid%20Wien%20Salzburg%20Innsbruck_20111940.pdf . Zugegriffen: 2. März 2023.
Hughes DC, Orchard JW, Partridge EM, La Gerche A, Broderick C. Return to exercise post-COVID-19 infection: a pragmatic approach in mid-2022. J Sci Med Sport. 2022;25(7):544–7.
pubmed: 35725689
pmcid: 9170595
doi: 10.1016/j.jsams.2022.06.001
Berrisch-Rahmel S. COVID-19 und return to play. https://sportaerztezeitung.com/rubriken/training/1050/covid-19-und-return-to-play/ . Zugegriffen: 2. März 2023.
Steinacker JM, Schellenberg J, Bloch W, et al. Recommendations for return-to-sport after COVID-19: expert consensus. Dtsch Z Sportmed. 2022;73(4):127–36.
Pelliccia A, Solberg EE, Papadakis M, et al. Recommendations for participation in competitive and leisure time sport in athletes with cardiomyopathies, myocarditis, and pericarditis: position statement of the Sport Cardiology Section of the European Association of Preventive Cardiology (EAPC). Eur Heart J. 2019;40(1):19–33.
pubmed: 30561613
doi: 10.1093/eurheartj/ehy730
Schellhorn P, Klingel K, Burgstahler C. Return to sports after COVID-19 infection. Eur Heart J. 2020;41(46):4382–4.
pubmed: 32432700
doi: 10.1093/eurheartj/ehaa448
Gloeckl R, Leitl D, Jarosch I, et al. Benefits of pulmonary rehabilitation in COVID-19: a prospective observational cohort study. ERJ Open Res. 2021;7(2). https://doi.org/10.1183/23120541.00108-2021 .
Spielmanns M, Pekacka-Egli A‑M, Schoendorf S, Windisch W, Hermann M. Effects of a comprehensive pulmonary rehabilitation in severe post-COVID-19 patients. Int J Environ Res Public Health. 2021;18(5):2695.
pubmed: 33800094
pmcid: 7967422
doi: 10.3390/ijerph18052695
Al Chikhanie Y, Veale D, Schoeffler M, Pépin JL, Verges S, Hérengt F. Effectiveness of pulmonary rehabilitation in COVID-19 respiratory failure patients post-ICU. Respir Physiol Neurobiol. 2021;287:103639.
pubmed: 33588090
pmcid: 7879818
doi: 10.1016/j.resp.2021.103639
Needham DM, Davidson J, Cohen H, et al. Improving long-term outcomes after discharge from intensive care unit: report from a stakeholders’ conference. Crit Care Med. 2012;40(2):502–9.
pubmed: 21946660
doi: 10.1097/CCM.0b013e318232da75
Pistarini C, Fiabane E, Houdayer E, Vassallo C, Manera MR, Alemanno F. Cognitive and emotional disturbances due to COVID-19: an exploratory study in the rehabilitation setting. Front Neurol. 2021;12:500.
doi: 10.3389/fneur.2021.643646
Piquet V, Luczak C, Seiler F, et al. Do patients with COVID-19 benefit from rehabilitation? Functional outcomes of the first 100 patients in a COVID-19 rehabilitation unit. Arch Phys Med Rehabil. 2021;102(6):1067–74.
pubmed: 33548208
pmcid: 7857995
doi: 10.1016/j.apmr.2021.01.069
Calabrese M, Garofano M, Palumbo R, et al. Exercise training and cardiac rehabilitation in COVID-19 patients with cardiovascular complications: state of art. Life. 2021;11(3):259.
pubmed: 33801080
pmcid: 8004041
doi: 10.3390/life11030259
Boukhris M, Hillani A, Moroni F, et al. Cardiovascular implications of the COVID-19 pandemic: a global perspective. Can J Cardiol. 2020;36(7):1068–80.
pubmed: 32425328
doi: 10.1016/j.cjca.2020.05.018
S3-Leitlinie zur kardiologischen Rehabilitation (LL-KardReha) im deutschsprachigen Raum Europas, Deutschland, Österreich, Schweiz (D-A-CH), Langversion – 2020 AWMF Registernummer: 133 – 001 (Stand: 7. Jan. 2020).