The structure of cognitive strategies for wayfinding decisions.
Journal
Psychological research
ISSN: 1430-2772
Titre abrégé: Psychol Res
Pays: Germany
ID NLM: 0435062
Informations de publication
Date de publication:
09 Aug 2023
09 Aug 2023
Historique:
received:
01
03
2023
accepted:
30
07
2023
medline:
9
8
2023
pubmed:
9
8
2023
entrez:
9
8
2023
Statut:
aheadofprint
Résumé
Literature proposes five distinct cognitive strategies for wayfinding decisions at intersections. Our study investigates whether those strategies rely on a generalized decision-making process, on two frame-specific processes-one in an egocentric and the other in an allocentric spatial reference frame, and/or on five strategy-specific processes. Participants took six trips along a prescribed route through five virtual mazes, each designed for decision-making by a particular strategy. We found that wayfinding accuracy on trips through a given maze correlated significantly with the accuracy on trips through another maze that was designed for a different reference frame (r
Identifiants
pubmed: 37555941
doi: 10.1007/s00426-023-01863-3
pii: 10.1007/s00426-023-01863-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Marga und Walter Boll-Stiftung
ID : 210-05. 01-21
Organisme : Marga und Walter Boll-Stiftung
ID : 210-05. 01-21
Informations de copyright
© 2023. The Author(s).
Références
Bock, O., & Borisova, S. (2022). A comparison of the serial order strategy and the associative cue strategy for decision making in wayfinding tasks. International Journal of Signage and Wayfinding, 6(2), 7–16. https://doi.org/10.15763/issn.2470-9670.2022.v6.i2.a117
doi: 10.15763/issn.2470-9670.2022.v6.i2.a117
Bock, O., Huang, J.-Y., Onur, Ö. A., & Memmert, D. (2023). Choice between decision-making strategies in human route-following. Memory & Cognition. https://doi.org/10.3758/s13421-023-01422-6
doi: 10.3758/s13421-023-01422-6
Chersi, F., & Burgess, N. (2015). The cognitive architecture of spatial navigation: Hippocampal and striatal contributions. Neuron, 88(1), 64–77. https://doi.org/10.1016/j.neuron.2015.09.021
doi: 10.1016/j.neuron.2015.09.021
pubmed: 26447573
Colombo, D., Serino, S., Tuena, C., Pedroli, E., Dakanalis, A., Cipresso, P., & Riva, G. (2017). Egocentric and allocentric spatial reference frames in aging: A systematic review. Neuroscience and Biobehavioral Reviews, 80, 605–621. https://doi.org/10.1016/j.neubiorev.2017.07.012
doi: 10.1016/j.neubiorev.2017.07.012
pubmed: 28760627
Damos, D. L., & Wickens, C. D. (1977). Dual-task performance and the Hick–Hyman law of choice reaction time. Journal of Motor Behavior, 9(3), 209–215. https://doi.org/10.1080/00222895.1977.10735111
doi: 10.1080/00222895.1977.10735111
pubmed: 23952876
Doeller, C. F., King, J. A., & Burgess, N. (2008). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5915–5920. https://doi.org/10.1073/pnas.0801489105
doi: 10.1073/pnas.0801489105
pubmed: 18408152
pmcid: 2311337
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146
doi: 10.3758/BF03193146
pubmed: 17695343
Hamburger, K. (2020). Visual landmarks are exaggerated: A theoretical and empirical view on the meaning of landmarks in human wayfinding. KI-Künstliche Intelligenz, 34, 557–562. https://doi.org/10.1007/s13218-020-00668-5
doi: 10.1007/s13218-020-00668-5
Hegarty, M., He, C., Boone, A. P., Yu, S., Jacobs, E. G., & Chrastil, E. R. (2022). Understanding differences in wayfinding strategies. Topics in Cognitive Science, 10, 102–119. https://doi.org/10.1111/tops.12592
doi: 10.1111/tops.12592
Hölscher, C., Buchner, S. J., Meilinger, T., & Strube, G. (2009). Adaptivity of wayfinding strategies in a multi-building ensemble: The effects of spatial structure, task requirements, and metric information. Journal of Environmental Psychology, 29(2), 208–219. https://doi.org/10.1016/j.jenvp.2008.05.010
doi: 10.1016/j.jenvp.2008.05.010
Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: Variability and change with practice. The Journal of Neuroscience, 23(13), 5945–5952. https://doi.org/10.1523/JNEUROSCI.23-13-05945.2003
doi: 10.1523/JNEUROSCI.23-13-05945.2003
pubmed: 12843299
pmcid: 6741255
Iglói, K., Zaoui, M., Berthoz, A., & Rondi-Reig, L. (2009). Sequential egocentric strategy is acquired as early as allocentric strategy: Parallel acquisition of these two navigation strategies. Hippocampus, 19(12), 1199–1211. https://doi.org/10.1002/hipo.20595
doi: 10.1002/hipo.20595
pubmed: 19360853
Ino, T., Inoue, Y., Kage, M., Hirose, S., Kimura, T., & Fukuyama, H. (2002). Mental navigation in humans is processed in the anterior bank of the parieto-occipital sulcus. Neuroscience Letters, 322(3), 182–186. https://doi.org/10.1016/S0304-3940(02)00019-8
doi: 10.1016/S0304-3940(02)00019-8
pubmed: 11897168
Jacobs, W. J., Laurance, H. E., & Thomas, K. G. F. (1997). Place learning in virtual space I: Acquisition, overshadowing, and transfer. Learning and Motivation, 28(4), 521–541. https://doi.org/10.1006/lmot.1997.0977
doi: 10.1006/lmot.1997.0977
Jammalamadaka, S. R., & SenGupta, A. (2001). Topics in circular statistics (Vol. 5). World Scientific. https://doi.org/10.1142/4031
doi: 10.1142/4031
Latini-Corazzini, L., Nesa, M. P., Ceccaldi, M., Guedj, E., Thinus-Blanc, C., Cauda, F., Dagata, F., & Péruch, P. (2010). Route and survey processing of topographical memory during navigation. Psychological Research Psychologische Forschung, 74, 545–559. https://doi.org/10.1007/s00426-010-0276-5
doi: 10.1007/s00426-010-0276-5
pubmed: 20174930
Marchette, S. A., Bakker, A., & Shelton, A. L. (2011). Cognitive mappers to creatures of habit: Differential engagement of place and response learning mechanisms predicts human navigational behavior. The Journal of Neuroscience, 31(43), 15264–15268. https://doi.org/10.1523/JNEUROSCI.3634-11.2011
doi: 10.1523/JNEUROSCI.3634-11.2011
pubmed: 22031872
pmcid: 4826051
Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11(1), 47–60. https://doi.org/10.1016/0165-0270(84)90007-4
doi: 10.1016/0165-0270(84)90007-4
pubmed: 6471907
O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Clarendon Press.
Paivio, A., & Csapo, K. (1973). Picture superiority in free recall: Imagery or dual coding? Cognitive Psychology, 5(2), 176–206. https://doi.org/10.1016/0010-0285(73)90032-7
doi: 10.1016/0010-0285(73)90032-7
Tlauka, M., & Wilson, P. N. (1994). The effect of landmarks on route-learning in a computer-simulated environment. Journal of Environmental Psychology, 14(4), 305–313. https://doi.org/10.1016/S0272-4944(05)80221-X
doi: 10.1016/S0272-4944(05)80221-X
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189–208. https://doi.org/10.1037/h0061626
Waller, D., & Lippa, Y. (2007). Landmarks as beacons and associative cues: Their role in route learning. Memory & Cognition, 35(5), 910–924. https://doi.org/10.3758/BF03193465
doi: 10.3758/BF03193465
Wiener, J. M., Büchner, S. J., & Hölscher, C. (2009). Taxonomy of human wayfinding tasks: A knowledge-based approach. Spatial Cognition and Computation, 9(2), 152–165. https://doi.org/10.1080/13875860902906496
doi: 10.1080/13875860902906496
Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14(3), 138–146. https://doi.org/10.1016/j.tics.2010.01.001
doi: 10.1016/j.tics.2010.01.001
pubmed: 20138795
Yesiltepe, D., Dalton, R. C., & Torun, A. O. (2021). Landmarks in wayfinding: A review of the existing literature. Cognitive Processing. https://doi.org/10.1007/s10339-021-01012-x
doi: 10.1007/s10339-021-01012-x
pubmed: 33682034
pmcid: 8324579