The structure of cognitive strategies for wayfinding decisions.


Journal

Psychological research
ISSN: 1430-2772
Titre abrégé: Psychol Res
Pays: Germany
ID NLM: 0435062

Informations de publication

Date de publication:
09 Aug 2023
Historique:
received: 01 03 2023
accepted: 30 07 2023
medline: 9 8 2023
pubmed: 9 8 2023
entrez: 9 8 2023
Statut: aheadofprint

Résumé

Literature proposes five distinct cognitive strategies for wayfinding decisions at intersections. Our study investigates whether those strategies rely on a generalized decision-making process, on two frame-specific processes-one in an egocentric and the other in an allocentric spatial reference frame, and/or on five strategy-specific processes. Participants took six trips along a prescribed route through five virtual mazes, each designed for decision-making by a particular strategy. We found that wayfinding accuracy on trips through a given maze correlated significantly with the accuracy on trips through another maze that was designed for a different reference frame (r

Identifiants

pubmed: 37555941
doi: 10.1007/s00426-023-01863-3
pii: 10.1007/s00426-023-01863-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Marga und Walter Boll-Stiftung
ID : 210-05. 01-21
Organisme : Marga und Walter Boll-Stiftung
ID : 210-05. 01-21

Informations de copyright

© 2023. The Author(s).

Références

Bock, O., & Borisova, S. (2022). A comparison of the serial order strategy and the associative cue strategy for decision making in wayfinding tasks. International Journal of Signage and Wayfinding, 6(2), 7–16. https://doi.org/10.15763/issn.2470-9670.2022.v6.i2.a117
doi: 10.15763/issn.2470-9670.2022.v6.i2.a117
Bock, O., Huang, J.-Y., Onur, Ö. A., & Memmert, D. (2023). Choice between decision-making strategies in human route-following. Memory & Cognition. https://doi.org/10.3758/s13421-023-01422-6
doi: 10.3758/s13421-023-01422-6
Chersi, F., & Burgess, N. (2015). The cognitive architecture of spatial navigation: Hippocampal and striatal contributions. Neuron, 88(1), 64–77. https://doi.org/10.1016/j.neuron.2015.09.021
doi: 10.1016/j.neuron.2015.09.021 pubmed: 26447573
Colombo, D., Serino, S., Tuena, C., Pedroli, E., Dakanalis, A., Cipresso, P., & Riva, G. (2017). Egocentric and allocentric spatial reference frames in aging: A systematic review. Neuroscience and Biobehavioral Reviews, 80, 605–621. https://doi.org/10.1016/j.neubiorev.2017.07.012
doi: 10.1016/j.neubiorev.2017.07.012 pubmed: 28760627
Damos, D. L., & Wickens, C. D. (1977). Dual-task performance and the Hick–Hyman law of choice reaction time. Journal of Motor Behavior, 9(3), 209–215. https://doi.org/10.1080/00222895.1977.10735111
doi: 10.1080/00222895.1977.10735111 pubmed: 23952876
Doeller, C. F., King, J. A., & Burgess, N. (2008). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5915–5920. https://doi.org/10.1073/pnas.0801489105
doi: 10.1073/pnas.0801489105 pubmed: 18408152 pmcid: 2311337
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146
doi: 10.3758/BF03193146 pubmed: 17695343
Hamburger, K. (2020). Visual landmarks are exaggerated: A theoretical and empirical view on the meaning of landmarks in human wayfinding. KI-Künstliche Intelligenz, 34, 557–562. https://doi.org/10.1007/s13218-020-00668-5
doi: 10.1007/s13218-020-00668-5
Hegarty, M., He, C., Boone, A. P., Yu, S., Jacobs, E. G., & Chrastil, E. R. (2022). Understanding differences in wayfinding strategies. Topics in Cognitive Science, 10, 102–119. https://doi.org/10.1111/tops.12592
doi: 10.1111/tops.12592
Hölscher, C., Buchner, S. J., Meilinger, T., & Strube, G. (2009). Adaptivity of wayfinding strategies in a multi-building ensemble: The effects of spatial structure, task requirements, and metric information. Journal of Environmental Psychology, 29(2), 208–219. https://doi.org/10.1016/j.jenvp.2008.05.010
doi: 10.1016/j.jenvp.2008.05.010
Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: Variability and change with practice. The Journal of Neuroscience, 23(13), 5945–5952. https://doi.org/10.1523/JNEUROSCI.23-13-05945.2003
doi: 10.1523/JNEUROSCI.23-13-05945.2003 pubmed: 12843299 pmcid: 6741255
Iglói, K., Zaoui, M., Berthoz, A., & Rondi-Reig, L. (2009). Sequential egocentric strategy is acquired as early as allocentric strategy: Parallel acquisition of these two navigation strategies. Hippocampus, 19(12), 1199–1211. https://doi.org/10.1002/hipo.20595
doi: 10.1002/hipo.20595 pubmed: 19360853
Ino, T., Inoue, Y., Kage, M., Hirose, S., Kimura, T., & Fukuyama, H. (2002). Mental navigation in humans is processed in the anterior bank of the parieto-occipital sulcus. Neuroscience Letters, 322(3), 182–186. https://doi.org/10.1016/S0304-3940(02)00019-8
doi: 10.1016/S0304-3940(02)00019-8 pubmed: 11897168
Jacobs, W. J., Laurance, H. E., & Thomas, K. G. F. (1997). Place learning in virtual space I: Acquisition, overshadowing, and transfer. Learning and Motivation, 28(4), 521–541. https://doi.org/10.1006/lmot.1997.0977
doi: 10.1006/lmot.1997.0977
Jammalamadaka, S. R., & SenGupta, A. (2001). Topics in circular statistics (Vol. 5). World Scientific. https://doi.org/10.1142/4031
doi: 10.1142/4031
Latini-Corazzini, L., Nesa, M. P., Ceccaldi, M., Guedj, E., Thinus-Blanc, C., Cauda, F., Dagata, F., & Péruch, P. (2010). Route and survey processing of topographical memory during navigation. Psychological Research Psychologische Forschung, 74, 545–559. https://doi.org/10.1007/s00426-010-0276-5
doi: 10.1007/s00426-010-0276-5 pubmed: 20174930
Marchette, S. A., Bakker, A., & Shelton, A. L. (2011). Cognitive mappers to creatures of habit: Differential engagement of place and response learning mechanisms predicts human navigational behavior. The Journal of Neuroscience, 31(43), 15264–15268. https://doi.org/10.1523/JNEUROSCI.3634-11.2011
doi: 10.1523/JNEUROSCI.3634-11.2011 pubmed: 22031872 pmcid: 4826051
Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11(1), 47–60. https://doi.org/10.1016/0165-0270(84)90007-4
doi: 10.1016/0165-0270(84)90007-4 pubmed: 6471907
O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Clarendon Press.
Paivio, A., & Csapo, K. (1973). Picture superiority in free recall: Imagery or dual coding? Cognitive Psychology, 5(2), 176–206. https://doi.org/10.1016/0010-0285(73)90032-7
doi: 10.1016/0010-0285(73)90032-7
Tlauka, M., & Wilson, P. N. (1994). The effect of landmarks on route-learning in a computer-simulated environment. Journal of Environmental Psychology, 14(4), 305–313. https://doi.org/10.1016/S0272-4944(05)80221-X
doi: 10.1016/S0272-4944(05)80221-X
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189–208. https://doi.org/10.1037/h0061626
Waller, D., & Lippa, Y. (2007). Landmarks as beacons and associative cues: Their role in route learning. Memory & Cognition, 35(5), 910–924. https://doi.org/10.3758/BF03193465
doi: 10.3758/BF03193465
Wiener, J. M., Büchner, S. J., & Hölscher, C. (2009). Taxonomy of human wayfinding tasks: A knowledge-based approach. Spatial Cognition and Computation, 9(2), 152–165. https://doi.org/10.1080/13875860902906496
doi: 10.1080/13875860902906496
Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14(3), 138–146. https://doi.org/10.1016/j.tics.2010.01.001
doi: 10.1016/j.tics.2010.01.001 pubmed: 20138795
Yesiltepe, D., Dalton, R. C., & Torun, A. O. (2021). Landmarks in wayfinding: A review of the existing literature. Cognitive Processing. https://doi.org/10.1007/s10339-021-01012-x
doi: 10.1007/s10339-021-01012-x pubmed: 33682034 pmcid: 8324579

Auteurs

Otmar Bock (O)

Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany. bock@dshs-koeln.de.

Ju-Yi Huang (JY)

Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany.

Oezguer A Onur (OA)

Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Daniel Memmert (D)

Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany.

Classifications MeSH