Assessment of whole-body MRI including diffusion-weighted sequences in the initial staging of breast cancer patients at high risk of metastases in comparison with PET-CT: a prospective cohort study.

Breast neoplasms Diffusion magnetic resonance imaging Magnetic resonance imaging Neoplasm metastasis Positron-emission tomography

Journal

European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774

Informations de publication

Date de publication:
09 Aug 2023
Historique:
received: 30 12 2022
accepted: 13 06 2023
revised: 19 04 2023
medline: 9 8 2023
pubmed: 9 8 2023
entrez: 9 8 2023
Statut: aheadofprint

Résumé

The aim of this study was to assess the diffusion-weighted whole-body-MRI (WBMRI) in the initial staging of breast cancer at high risk of metastases in comparison with positron emission tomography (PET)-CT. Forty-five women were prospectively enrolled. The inclusion criteria were female gender, age >18, invasive breast cancer, an initial PET-CT, and a performance status of 0-2. The exclusion criteria were contraindication to WB-MRI and breast cancer recurrence. The primary outcome was the concordance of WB-MRI and PET-CT in the diagnosis of distant metastases, whereas secondary outcomes included their concordance for the primary tumor and regional lymph nodes (LN), as well as the agreement of WB-MRI interpretation between two radiologists. The mean age was 51.2 years with a median size of the primary tumor of 30 mm. Concordance between the two modalities was almost perfect for metastases staging, all sites included (k = 0.862), with excellent interobserver agreement. The accuracy of WB-MRI for detecting regional LN, distant LN, lung, liver, or bone metastases ranged from 91 to 96%. In 2 patients, WB-MRI detected bone metastases that were overlooked by PET-CT. WB-MRI showed a substantial agreement with PET-CT for staging the primary tumor, regional LN status, and stage (k = 0.766, k = 0.756, and k = 0.785, respectively) with a high interobserver agreement. WB-MRI including DWI could be a reliable and reproducible examination in the initial staging of breast cancer patients at high risk of metastases, especially for bone metastases and therefore could be used as a surrogate to PET-CT. Whole-body-MRI including DWI is a promising technique for detecting metastases in the initial staging of breast cancer at high risk of metastases. Whole-body-MRI (WB-MRI) was effective for detecting metastases in the initial staging of 45 breast cancer patients at high risk of metastases in comparison with PET-CT. Concordance between WB-MRI and PET-CT was almost perfect for metastases staging, all sites included, with excellent interobserver agreement. The accuracy of WB-MRI for detecting bone metastases was 92%.

Identifiants

pubmed: 37555959
doi: 10.1007/s00330-023-10060-0
pii: 10.1007/s00330-023-10060-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to European Society of Radiology.

Références

Haagensen CD (1986) Disease of the breast. 3rd ed. W.B. Saunders, Philadelphia
Chen W, Hoffmann AD, Liu H, Liu X (2018) Organotropism: new insights into molecular mechanisms of breast cancer metastasis. NPJ Precis Oncol 16:4
doi: 10.1038/s41698-018-0047-0
Yates LR, Knappskog S, Wedge D et al (2017) Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32:169–184
doi: 10.1016/j.ccell.2017.07.005 pubmed: 28810143 pmcid: 5559645
Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11:411–425
doi: 10.1038/nrc3055 pubmed: 21593787 pmcid: 3666847
Sherry MM, Greco FA, Johnson DH, Hainsworth JD (1986) Metastatic breast cancer confined to the skeletal system. An indolent disease. Am J Med 81:381–386
Niikura N, Liu J, Hayashi N et al (2011) Treatment outcome and prognosis factors for patients with bone-only metastases of breast cancer: a single-institution retrospective analysis. Oncologist 16:155–164
doi: 10.1634/theoncologist.2010-0350 pubmed: 21266401 pmcid: 3228079
Kast K, Link T, Friedrich K et al (2015) Impact of breast cancer subtypes and patterns of metastasis on outcome. Breast Cancer Res Treat 150:621–629
doi: 10.1007/s10549-015-3341-3 pubmed: 25783184
Wu Q, Li J, Zhu S et al (2017) Breast cancer subtypes predict the preferential site of metastases: a SEER based study. Oncotarget 8:27990–27996
doi: 10.18632/oncotarget.15856 pubmed: 28427196 pmcid: 5438624
Amin MB, Edge SB, Greene FL et al (2017) AJCC Cancer Staging Manual. Springer 8th Edition
Brierley J, Gospodarowicz M, Wittekind C (2017) Union for International Cancer Control. In: The TNM Classification of Malignant Tumours 8th Edition. Oxford John Wiley & Sons
Senkus E, Kyriakides S, Ohno S et al (2015) ESMO Guidelines Committee. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 26:8–30
doi: 10.1093/annonc/mdv298
Gradishar WJ, Anderson BO, Balassanian R et al (2016) Invasive Breast Cancer Version 1.2016 NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw 14:324–354
doi: 10.6004/jnccn.2016.0037
Bruckmann NM, Sawicki LM, Kirchner J et al (2020) Prospective evaluation of whole-body MRI and
doi: 10.1007/s00259-020-04801-2 pubmed: 32333068 pmcid: 7567721
Morone M, Bali MA, Tunariu N et al (2017) Whole-body MRI: current applications in oncology. AJR Am J Roentgenol 209:336–349
doi: 10.2214/AJR.17.17984
Dimopoulos MA, Hillengass J, Usmani S et al (2015) Role of magnetic resonance imaging in the management of patients with multiple myeloma: a concensus statement. J Clin Oncol 33:657–664
doi: 10.1200/JCO.2014.57.9961 pubmed: 25605835
Pasoglou V, Michoux N, Peeters F et al (2015) Whole-body 3D T1-weighted MR imaging in patients with prostate cancer: feasibility and evaluation in screening for metastatic disease. Radiology 275:155–166
doi: 10.1148/radiol.14141242 pubmed: 25513855
Padhani AR, Lecouvet FE, Tunariu N et al (2017) METastasis reporting and data system for prostate cancer: practical guidelines for acquisition, interpretation and reporting of whole-body magnetic resonance imaging-based evaluations of multiorgan involvement in advanced prostate cancer. Eur Urol 71:81–92
doi: 10.1016/j.eururo.2016.05.033 pubmed: 27317091 pmcid: 5176005
Messiou C, Hillengass J, Delorme S et al (2019) Guidelines for acquisition, interpretation, and reporting of whole-body MRI in myeloma: Myeloma response assessment and diagnosis system (MY-RADS). Radiology 291:5–13
doi: 10.1148/radiol.2019181949 pubmed: 30806604
Petralia G, Koh D-M, Attariwala R et al (2021) Oncologically relevant findings reporting and data system (ONCO-RADS): guidelines for the acquisition, interpretation, and reporting of whole-body MRI for cancer screening. Radiology 299:494–507
doi: 10.1148/radiol.2021201740 pubmed: 33904776
Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948
doi: 10.1056/NEJMra1001389 pubmed: 21067385
Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, Carbone PP (1982) Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 5:649–655
doi: 10.1097/00000421-198212000-00014 pubmed: 7165009
Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution3D display. Radiat Med 22:275–282
pubmed: 15468951
Kwee TC, Takahara T, Ochiai R, Nievelstein RA, Luijten PR (2008) Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol 18:1937–1952
doi: 10.1007/s00330-008-0968-z pubmed: 18446344 pmcid: 2516183
Ranganathan P, Pramesh CS, Aggarwal R (2017) Common pitfalls in statistical analysis: Measures of agreement. Perspect Clin Res 8:187–191
doi: 10.4103/picr.PICR_123_17 pubmed: 29109937 pmcid: 5654219
Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics. 33:159–174
Jambor I, Kuisma A, Ramadan S et al (2016) Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, fort the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol 55:59–67
doi: 10.3109/0284186X.2015.1027411 pubmed: 25833330
Azad GK, Taylor BP, Green A et al (2019) Prediction of therapy response in bone-predominant metastatic breast cancer: comparison of [
doi: 10.1007/s00259-018-4223-9 pubmed: 30506455
Kosmin M, Padhani AR, Gogbashian A et al (2020) Comparison of whole-body MRI, CT, and bone scintigraphy for response evaluation of cancer therapeutics in metastatic breast cancer to bone. Radiology 297:622–629
doi: 10.1148/radiol.2020192683 pubmed: 33078998
Papageorgiou I, Dvorak J, Cosma I, Pfeil A, Teichgraeber U, Malich A (2020) Whole-body MRI: a powerfull alternative to bone scan for bone marrow staging without radiation and gadolinium enhancer. Clin Transl Oncol 22:1321–1328
doi: 10.1007/s12094-019-02257-x pubmed: 31858434
Bruckmann NM, Kirchner J, Umutlu L et al (2021) Prospective comparison of the diagnostic accuracy of 18F-FDG PET/MRI, MRI, CT, and bone scintigraphy for the detection of bone metastases in the initial staging of primary breast cancer patients. Eur Radiol 31:8714–8724
doi: 10.1007/s00330-021-07956-0 pubmed: 33912991 pmcid: 8523471
Albano D, Stecco A, Micci G et al (2021) Whole-body magnetic resonance imaging (WB-MRI) in oncology: an Italian survey. Radiol Med 126:299–305
doi: 10.1007/s11547-020-01242-7 pubmed: 32572763
Jacobs MA, Macura KJ, Zaheer A et al (2018) Multiparametric whole-body MRI with diffusion-weighted imaging and ADC mapping for the identification of visceral and osseous metastases from solid tumors. Acad Radiol 25:1405–1414
doi: 10.1016/j.acra.2018.02.010 pubmed: 29627288 pmcid: 6170723
Catalano OA, Daye D, Signore A et al (2017) Staging performance of whole-body DWI, PET/CT and PET/MRI in invasive ductal carcinoma of the breast. Int J Oncol 51:281–288
doi: 10.3892/ijo.2017.4012 pubmed: 28535000
Heusner T-A, Kuemmel S, Koeninger A et al (2010) Diagnostic value of diffusion-weighted magnetic resonance imaging (DWI) compared to FDG PET/CT for whole-body breast cancer staging. Eur J Nucl Med Mol Imaging 37:1077–1086
doi: 10.1007/s00259-010-1399-z pubmed: 20204355
Stecco A, Trisoglio A, Soligo E, Berardo S, Sukhovei L, Carriero A (2018) Whole-body MRI with diffusion-weighted imaging in bone metastases: a narrative review. Diagnostics (Basel) 8:45
doi: 10.3390/diagnostics8030045 pubmed: 29987207
Buus TW, Rasmussen F, Nellemann HM et al (2021) Comparison of contrast-enhanced CT, dual-layer detector spectral CT, and whole-body MRI in suspected metastatic breast cancer: a prospective diagnostic accuracy study. Eur Radiol 31:8838–8849
doi: 10.1007/s00330-021-08041-2 pubmed: 34008104
Minamimoto R, Loening A, Jamali M et al (2015) Prospective comparison of 99mTc-MDP Scintigraphy, Combined 18F-NaF and 18F-FDG PET/CT, and whole-body MRI in patients with breast and prostate cancer. J Nucl Med 56:1862–1868
doi: 10.2967/jnumed.115.162610 pubmed: 26405167
Yang H-L, Liu T, Wang X-M, Xu Y, Deng S-M (2011) Diagnosis of bone metastases: a meta-analysis comparing
doi: 10.1007/s00330-011-2221-4 pubmed: 21887484

Auteurs

Nathalie A Hottat (NA)

Department of Radiology, University Hospital Brugmann, Université Libre de Bruxelles, Place A. Van Gehuchten 4, 1020, Brussels, Belgium. nathalie.hottat@chu-brugmann.be.
Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Brussel, Belgium. nathalie.hottat@chu-brugmann.be.

Dominique A Badr (DA)

Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium.

Meriem Ben Ghanem (M)

Department of Radiology, University Hospital Brugmann, Université Libre de Bruxelles, Place A. Van Gehuchten 4, 1020, Brussels, Belgium.

Tatiana Besse-Hammer (T)

Clinical Research Unit, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium.

Sylvie M Lecomte (SM)

Department of Oncology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium.

Catherine Vansteelandt (C)

Department of Oncology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium.

Sophie L Lecomte (SL)

Department of Pathology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium.

Chirine Khaled (C)

Department of Pathology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium.

Veerle De Grove (V)

Department of Radiology, University Hospital Brugmann, Université Libre de Bruxelles, Place A. Van Gehuchten 4, 1020, Brussels, Belgium.

Georges Salem Wehbe (G)

Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium.

Mieke M Cannie (MM)

Department of Radiology, University Hospital Brugmann, Université Libre de Bruxelles, Place A. Van Gehuchten 4, 1020, Brussels, Belgium.
Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Brussel, Belgium.

Jacques C Jani (JC)

Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium.

Classifications MeSH