The current state of research and potential applications of insects for resource recovery and aquaculture feed.

Aquaculture Bio-economy Fish meal Insect-based meal Sustainable

Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
09 Aug 2023
Historique:
received: 13 01 2023
accepted: 26 07 2023
medline: 9 8 2023
pubmed: 9 8 2023
entrez: 9 8 2023
Statut: aheadofprint

Résumé

Concerns about fishmeal use and its ecological footprints must be addressed for the aquaculture industry to move on as a sustainable food production sector. Through recent research outcomes, the insect-based meals in fish diets have promise and harnessed promises for commercial applications. In this midst, the efficiency of the selected insects in valorizing biological waste, as well as the nutritional profile of the harvested insects for use in fish diets, will be the driving forces behind such an approach. More extensive research has been published on the suitability of the waste substrate, the nutritional profiling of the meals, the level of substitution, the effects on growth, the immune physiology, and the flesh quality of the animals. Previously, there are only a few reviews available in insect protein applications in aqua feed that focused particularly on the nutritional quality and substitution levels. Considering the dearth of available work, the goal of this review is to provide a more comprehensive account of the resource recovery potential of insects and its derivatives, with a special emphasis on quality as determined by substrate used and processing techniques. Suggestions and policy implications for a sustainable approach to achieving a circular bio-economy of insect farming and its application in aquaculture are discussed for progression and advancement of the existing state of the art.

Identifiants

pubmed: 37556060
doi: 10.1007/s11356-023-29068-6
pii: 10.1007/s11356-023-29068-6
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Acar Ü, Türker A, Bulut M, Yıldırım Ö, Yılmaz S, Sabri Kesbiç O (2013) The effect of dietary soybean meal on growth, nutrient utilization, body composition and some serum biochemistry variables of two banded seabream, Diplodus vulgaris (Geoffroy Saint-Hilaire, 1817). Iran J Fish Sci 12(4):749–758. http://hdl.handle.net/1834/11649
Adámková A, Kouřimská L, Borkovcová M, Kulma M, Mlček J (2016) Nutritional values of edible Coleoptera (Tenebrio molitor. Zophobas morio and Alphitobius diaperinus) reared in the Czech Republic, Potravinarstvo. https://doi.org/10.5219/609
doi: 10.5219/609
Adeoye AA, Akegbejo-Samsons Y, Fawole FJ, Davies SJ (2020) Preliminary assessment of black soldier fly (Hermetia illucens) larval meal in the diet of African catfish (Clarias gariepinus): impact on growth, body index, and hematological parameters. J World Aquac Soc 51(4):1024–1033. https://doi.org/10.1111/jwas.12691
doi: 10.1111/jwas.12691
Alfiko Y, Xie D, Astuti RT, Wong J, Wang L (2021) Insects as a feed ingredient for fish culture: status and trends. Aquac Fish 7(2):166–178. https://doi.org/10.1016/j.aaf.2021.10.004
doi: 10.1016/j.aaf.2021.10.004
Amrul NF, Kabir Ahmad I, Ahmad Basri NE, Suja F, Abdul Jalil NA, Azman NA (2022) A review of organic waste treatment using black soldier fly (Hermetia illucens). Sustainability 14(8):4565. https://doi.org/10.3390/su14084565
doi: 10.3390/su14084565
Aniebo AO, Erondu ES, Owen OJ (2008) Proximate composition of housefly larvae (Musca domestica) meal generated from mixture of cattle blood and wheat bran. Livest Res Rural Dev 20(12):1–5. http://www.lrrd.org/lrrd20/12/anie20205.htm
Araújo RRS, dos Santos Benfica TAR, Ferraz VP, Santos EM (2019) Nutritional composition of insects Gryllus assimilis and Zophobas morio: potential foods harvested in Brazil. J Food Compos Anal 76:22–26. https://doi.org/10.1016/j.jfca.2018.11.005
doi: 10.1016/j.jfca.2018.11.005
Barker D, Fitzpatrick MP, Dierenfeld ES (1998) Nutrient composition of selected whole invertebrates. Zoo Biol 17(2):123–134. https://doi.org/10.1002/(SICI)1098-2361(1998)17:2%3c123::AID-ZOO7%3e3.0.CO;2-B
doi: 10.1002/(SICI)1098-2361(1998)17:2<123::AID-ZOO7>3.0.CO;2-B
Barnard DR, Harms RH, Sloan DR (1998) Biodegradation of poultry manure by house fly (Diptera: Muscidae). Environ Entomol 27(3):600–605. https://doi.org/10.1093/ee/27.3.600
doi: 10.1093/ee/27.3.600
Basto A, Maia MR, Pérez-Sánchez J, Calduch-Giner JA, Matos E, Valente LM (2019) Defatted yellow mealworm (Tenebrio molitor) larvae meal: a promising fishmeal substitute for European seabass. http://hdl.handle.net/10261/202649
Belghit I, Liland NS, Gjesdal P, Biancarosa I, Menchetti E, Li Y, Waagbø R, Krogdahl Å, Lock EJ (2019) Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 503:609–619. https://doi.org/10.1016/j.aquaculture.2018.12.032
doi: 10.1016/j.aquaculture.2018.12.032
Bell JG, Waagbø R (2008) Chapter 6. Safe and nutritious aquaculture produce: benefits and risks of alternative sustainable aqua-feeds. In: Holmer M, Black K, Duarte CM, Marba N, Karakassis I (eds) Aquaculture in the ecosystem. Springer, Dordrecht, pp 185–225
doi: 10.1007/978-1-4020-6810-2_6
Bernard JB, Allen ME, Ullrey DE (1997) Feeding captive insectivorous animals: nutritional aspects of insects as food. Nutrition Advisory Group Handbook, Fact Sheet, 3:1-7
Biasato I, Renna M, Gai F, Dabbou S, Meneguz M, Perona G, Martinez S, Lajusticia AC, Bergagna S, Sardi L, Capucchio MT (2019) Partially defatted black soldier fly larva meal inclusion in piglet diets: effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. J Anim Sci Biotechnol 1:1–1. https://doi.org/10.1186/s40104-019-0325-x
doi: 10.1186/s40104-019-0325-x
Bordiean A, Krzyżaniak M, Stolarski MJ, Peni D (2020) Growth potential of yellow mealworm reared on industrial residues. Agriculture 10(12):599. https://doi.org/10.3390/agriculture10120599
doi: 10.3390/agriculture10120599
Bordiean A, Krzyżaniak M, Aljewicz M, Stolarski MJ (2022) Influence of different diets on growth and nutritional composition of yellow mealworm. Foods 11(19):3075. https://doi.org/10.3390/foods11193075
doi: 10.3390/foods11193075
Bosch G, Zhang S, Oonincx DG, Hendriks WH (2014) Protein quality of insects as potential ingredients for dog and cat foods. J Nutr Sci 3:29. https://doi.org/10.1017/jns.2014.23
doi: 10.1017/jns.2014.23
Boyd CE, McNevin AA, Davis RP (2022) The contribution of fisheries and aquaculture to the global protein supply. Food Secur 14(3):805–827. https://doi.org/10.1007/s12571-021-01246-9
doi: 10.1007/s12571-021-01246-9
Bradley SW, Sheppard DC (1984) House fly oviposition inhibition by larvae of Hermetia illucens, the black soldier fly. J Chem Ecol 10(6):853–859. https://doi.org/10.1007/BF00987968
doi: 10.1007/BF00987968
Bruni L, Randazzo B, Cardinaletti G, Zarantoniello M, Mina F, Secci G, Tulli F, Olivotto I, Parisi G (2020) Dietary inclusion of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss): lipid metabolism and fillet quality investigations. Aquaculture 529:735678. https://doi.org/10.1016/j.aquaculture.2020.735678
doi: 10.1016/j.aquaculture.2020.735678
Bulet P, Hetru C, Dimarcq JL, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 23(4–5):329–344. https://doi.org/10.1016/S0145-305X(99)00015-4
doi: 10.1016/S0145-305X(99)00015-4
Cacchiarelli C, Fratini F, Puccini M, Vitolo S, Paci G, Mancini S (2022) Effects of different blanching treatments on colour and microbiological profile of Tenebrio molitor and Zophobas morio larvae. LWT 157:113112. https://doi.org/10.1016/j.lwt.2022.113112
doi: 10.1016/j.lwt.2022.113112
Caparros Megido R, Desmedt S, Blecker C, Béra F, Haubruge É, Alabi T, Francis F (2017) Microbiological load of edible insects found in Belgium. Insects 8(1):12. https://doi.org/10.3390/insects8010012
doi: 10.3390/insects8010012
Chae JH, Kurokawa K, So YI, Hwang HO, Kim MS, Park JW, Jo YH, Lee YS, Lee BL (2012) Purification and characterization of tenecin 4, a new anti-Gram-negative bacterial peptide, from the beetle Tenebrio molitor. Dev Comp Immunol 36(3):540–546. https://doi.org/10.1016/j.dci.2011.09.010
doi: 10.1016/j.dci.2011.09.010
Chavez M, Uchanski M (2021) Insect left-over substrate as plant fertiliser. J Insects Food Feed 7(5):683–694. https://doi.org/10.3920/JIFF2020.0063
doi: 10.3920/JIFF2020.0063
Chemello G, Renna M, Caimi C, Guerreiro I, Oliva-Teles A, Enes P, Biasato I, Schiavone A, Gai F, Gasco L (2020) Partially defatted Tenebrio molitor larva meal in diets for grow-out rainbow trout, Oncorhynchus mykiss (Walbaum): effects on growth performance, diet digestibility and metabolic responses. Animals 10(2):229. https://doi.org/10.3390/ani10020229
doi: 10.3390/ani10020229
Chen HY, Li HL, Pang H, Zhu CD, Zhang YZ (2021) Investigating the parasitoid community associated with the invasive 1275 mealybug Phenacoccus solenopsis in Southern China. Insects 12(4):290. https://doi.org/10.3390/insects12040290
doi: 10.3390/insects12040290
Cheng Z, Yu L, Li H, Xu X, Yang Z (2021) Use of housefly (Musca domestica L.) larvae to bioconversion food waste for animal nutrition and organic fertilizer. Environ Sci Pollut Res 28(35):48921–48928. https://doi.org/10.1007/s11356-021-14118-8
doi: 10.1007/s11356-021-14118-8
Choi S, Hassanzadeh N (2019) BSFL frass: a novel biofertilizer for improving plant health while minimizing environmental impact. Canadian Sci Fair J 2:41–46. https://doi.org/10.18192/csfj.v2i220194146
doi: 10.18192/csfj.v2i220194146
Cummins VC Jr, Rawles SD, Thompson KR, Velasquez A, Kobayashi Y, Hager J, Webster CD (2017) Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture 473:337–344. https://doi.org/10.1016/j.aquaculture.2017.02.022
doi: 10.1016/j.aquaculture.2017.02.022
Cytryńska M, Mak P, Zdybicka-Barabas A, Suder P, Jakubowicz T (2007) Purification and characterization of eight peptides from Galleria mellonella immune hemolymph. Peptides 28(3):533–546. https://doi.org/10.1016/j.peptides.2006.11.010
doi: 10.1016/j.peptides.2006.11.010
Dai C, Ma H, Luo L, Yin X (2013) Angiotensin I-converting enzyme (ACE) inhibitory peptide derived from Tenebrio molitor (L.) larva protein hydrolysate. Eur Food Res Technol 236(4):681–689. https://doi.org/10.1007/s00217-013-1923-z
doi: 10.1007/s00217-013-1923-z
Dawood MA (2021) Nutritional immunity of fish intestines: important insights for sustainable aquaculture. Rev Aquac 13(1):642e63. https://doi.org/10.1111/raq.12492
doi: 10.1111/raq.12492
Dawood MA (2022) Dietary copper requirements for aquatic animals: a review. Biol Trace Elem Res 200(12):5273–5282. https://doi.org/10.1007/s12011-021-03079-1
doi: 10.1007/s12011-021-03079-1
De Brauw A, van den Berg M, Brouwer ID, Snoek H, Vignola R, Melesse M, Lochetti G, van Wagenberg C, Lundy M, Maitre d’Hotel E, Ruben R (2019) Food system innovations for healthier diets in low and middle-income countries. IFPRI Discussion Paper 01816. International Food Policy Research Institute 32 pp
Deringer VL, Englert U, Dronskowski R (2016) Nature, strength, and cooperativity of the hydrogen-bonding network in α-chitin. Biomacromol 17(3):996–1003. https://doi.org/10.1021/acs.biomac.5b01653
doi: 10.1021/acs.biomac.5b01653
Dicke M (2018) Insects as feed and the sustainable development goals. J Insects Food Feed 4(3):147–156. https://doi.org/10.3920/JIFF2018.0003
doi: 10.3920/JIFF2018.0003
Diener S, Zurbrügg C, Tockner K (2009) Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Manag Res 27(6):603–610. https://doi.org/10.1177/0734242X09103838
doi: 10.1177/0734242X09103838
Đorđević M, Radenković-Damnjanović B, Vučinić M, Baltić MŽ, Teodorović R, Janković L, Vukašinović M, Rajković M (2008) Effects of substitution of fish meal with fresh and dehydrated larvae of the house fly (Musca domestica L) on productive performance and health of broilers. Acta Vet Beograd 58(4):357–368. https://doi.org/10.2298/AVB0804357D
doi: 10.2298/AVB0804357D
Erickson MC, Islam M, Sheppard C, Liao J, Doyle MP (2004) Reduction of Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis in chicken manure by larvae of the black soldier fly. J Food Prot 67:685–690. https://doi.org/10.4315/0362-028X-67.4.685
doi: 10.4315/0362-028X-67.4.685
Estévez A, Frade P, Ferreira M, Regueiro L, Alvarez M, Blanco B, Fernández L, Soula M (2022) Effects of alternative and sustainable ingredients on rainbow trout (Oncorhynchus mykiss) growth, muscle composition and health. Aquac J 2(2):37–50. https://doi.org/10.3390/aquacj2020004
doi: 10.3390/aquacj2020004
FAO (2014) The State of World Fisheries and Aquaculture. Sustainability in action; Food and Agriculture Organization of the United Nations: Rome, Italy. https://www.fao.org/3/i4040e/i4040e.pdf
FAO (2020) The State of World Fisheries and Aquaculture. Sustainability in action; Food and Agriculture Organization of the United Nations: Rome, Italy. https://doi.org/10.4060/ca9229en
FAO (2022) The State of World Fisheries and Aquaculture. Sustainability in action; Food and Agriculture Organization of the United Nations: Rome, Italy. https://www.fao.org/publications/sofia/2022/en/
Finke MD (2002) Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol 21(3):269–285. https://doi.org/10.1002/zoo.10031
doi: 10.1002/zoo.10031
Fisher HJ, Collins SA, Hanson C, Mason B, Colombo SM, Anderson DM (2020) Black soldier fly larvae meal as a protein source in low fish meal diets for Atlantic salmon (Salmo salar). Aquaculture 521:734978. https://doi.org/10.1016/j.aquaculture.2020.734978
doi: 10.1016/j.aquaculture.2020.734978
Fombong FT, Van Der Borght M, Vanden Broeck J (2017) Influence of freeze-drying and oven-drying post blanching on the nutrient composition of the edible insect Ruspolia differens. Insects 8(3):102. https://doi.org/10.3390/insects8030102
doi: 10.3390/insects8030102
Fry JP, Love DC, MacDonald GK, West PC, Engstrom PM, Nachman KE, Lawrence RS (2016) Environmental health impacts of feeding crops to farmed fish. Environ Int 91:201–214. https://doi.org/10.1016/j.envint.2016.02.022
doi: 10.1016/j.envint.2016.02.022
Gao M, Lin Y, Shi GZ, Li HH, Yang ZB, Xu XX, Xian JR, Yang YX, Cheng Z (2019) Bioaccumulation and health risk assessments of trace elements in housefly (Musca domestica L.) larvae fed with food wastes. Sci Total Environ 682:485–493. https://doi.org/10.1016/j.scitotenv.2019.05.182
doi: 10.1016/j.scitotenv.2019.05.182
Gasco L, Henry M, Piccolo G, Marono S, Gai F, Renna M, Lussiana C, Antonopoulou E, Mola P, Chatzifotis S (2016) Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: growth performance, whole body composition and in vivo apparent digestibility. Anim Feed Sci Technol 220:34–45. https://doi.org/10.1016/j.anifeedsci.2016.07.003
doi: 10.1016/j.anifeedsci.2016.07.003
Gasco L, Belforti M, Rotolo L, Lussiana C, Parisi G, Terova G, Roncarati A, Gai F (2014) Mealworm (Tenebrio molitor) as a potential ingredient in practical diets for rainbow trout (Oncorhynchus mykiss). InProc. 1st Int. Conf. Insects to Feed the World, Wageningen University, Wageningen, The Netherlands.
Gaudioso G, Marzorati G, Faccenda F, Weil T, Lunelli F, Cardinaletti G et al (2021) Processed animal proteins from insect and poultry by-products in a fish meal-free diet for rainbow trout: impact on intestinal microbiota and inflammatory markers. Int J Mol Sci 22(11):5454. https://doi.org/10.3390/ijms22115454.PMID:34064267;PMCID:PMC8196822
doi: 10.3390/ijms22115454.PMID:34064267;PMCID:PMC8196822
Grabowski NT, Klein G (2017) Microbiology of cooked and dried edible Mediterranean field crickets (Gryllus bimaculatus) and superworms (Zophobas atratus) submitted to four different heating treatments. Food Sci Technol Int 23(1):17–23. https://doi.org/10.1177/1082013216652994
doi: 10.1177/1082013216652994
Hashizume A, Ido A, Ohta T, Thiaw ST, Morita R, Nishikawa M, Takahashi T, Miura C, Miura T (2019) Housefly (Musca domestica) larvae preparations after removing the hydrophobic fraction are effective alternatives to fish meal in aquaculture feed for red seabream (Pagrus major). Fishes 4(3):38. https://doi.org/10.3390/fishes4030038
doi: 10.3390/fishes4030038
Hazreen-Nita MK, Abdul Kari Z, Mat K, Rusli ND, Mohamad Sukri SA, Harun HC et al (2022) Olive oil by-products in aqua-feeds: opportunities and challenges. Aquac Rep 22:100998. https://doi.org/10.1016/j.aqrep.2021.100998
doi: 10.1016/j.aqrep.2021.100998
Henry MA, Gasco L, Piccolo G, Fountoulaki E (2015) Review on the use of insects in the diet of farmed fish: past and future. Anim Feed Sci Technol 203:1–22. https://doi.org/10.1016/j.anifeedsci.2015.03.001
doi: 10.1016/j.anifeedsci.2015.03.001
Henry MA, Gai F, Enes P, Peréz-Jiménez A, Gasco L (2018) Effect of partial dietary replacement of fishmeal by yellow mealworm (Tenebrio molitor) larvae meal on the innate immune response and intestinal antioxidant enzymes of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 83:308–313. https://doi.org/10.1016/j.fsi.2018.09.040
doi: 10.1016/j.fsi.2018.09.040
Henry MA, Golomazou E, Asimaki A, Psofakis P, Fountoulaki E, Mente E, Rumbos CI, Athanassiou CG, Karapanagiotidis IT (2022) Partial dietary fishmeal replacement with full-fat or defatted superworm (Zophobas morio) larvae meals modulates the innate immune system of gilthead seabream, Sparus aurata. Aquaculture 27:101347. https://doi.org/10.1016/j.aqrep.2022.101347
doi: 10.1016/j.aqrep.2022.101347
Hoc B, Tomson T, Malumba P, Blecker C, Jijakli MH, Purcaro G, Francis F, Megido RC (2021) Production of rainbow trout (Oncorhynchus mykiss) using black soldier fly (Hermetia illucens) prepupae-based formulations with differentiated fatty acid profiles. Sci Total Environ 794:148647. https://doi.org/10.1016/j.scitotenv.2021.148647
doi: 10.1016/j.scitotenv.2021.148647
Hu ZM, Shan TF, Zhang J, Zhang QS, Critchley AT, Choi HG, Yotsukura N, Liu FL, Duan DL (2021) Kelp aquaculture in China: a retrospective and future prospects. Rev Aquac 13(3):1324–1351. https://doi.org/10.1111/raq.12524
doi: 10.1111/raq.12524
Hua K, Cobcroft JM, Cole A, Condon K, Jerry DR, Mangott A, Praeger C, Vucko MJ, Zeng C, Zenger K, Strugnell JM (2019) The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth 1(3):316–329. https://doi.org/10.1016/j.oneear.2019.10.018
doi: 10.1016/j.oneear.2019.10.018
Hussein M, Pillai VV, Goddard JM, Park HG, Kothapalli KS, Ross DA, Ketterings QM, Brenna JT, Milstein MB, Marquis H, Johnson PA (2017) Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure. PLoS One 12(2):e0171708. https://doi.org/10.1371/journal.pone.0171708
doi: 10.1371/journal.pone.0171708
Hwangbo J, Hong EC, Jang A, Kang HK, Oh JS, Kim BW, Park BS (2009) Utilization of house fly-maggots, a feed supplement in the production of broiler chickens. J Environ Biol 30(4):609–614
Iaconisi V, Bonelli A, Pupino R, Gai F, Parisi G (2018) Mealworm as dietary protein source for rainbow trout: body and fillet quality traits. Aquaculture 484:197–204. https://doi.org/10.1016/j.aquaculture.2017.11.034
doi: 10.1016/j.aquaculture.2017.11.034
Ibitoye EB, Lokman IH, Hezmee MN, Goh YM, Zuki AB, Jimoh AA (2018) Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomed Mater 13(2):025009. https://doi.org/10.1088/1748-605x/aa9dde
doi: 10.1088/1748-605x/aa9dde
Ipinmoroti MO, Akanmu OA, Iyiola AO (2019) Utilisation of house fly maggots (Musca domestica) as replacement for fish meal in the diets of Clarias gariepinus juveniles. J Insects Food Feed 5(2):69–76. https://doi.org/10.3920/JIFF2017.0057
doi: 10.3920/JIFF2017.0057
Islam S, Bhuiyan MA, Islam MN (2017) Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ 25(3):854–866. https://doi.org/10.1007/s10924-016-0865-5
doi: 10.1007/s10924-016-0865-5
Jucker C, Belluco S, Oddon SB, Ricci A, Bonizzi L, Lupi D, Savoldelli S, Biasato I, Caimi C, Mascaretti A, Gasco L (2022) Impact of some local organic by-products on Acheta domesticus growth and meal production. J Insects Food Feed 8(6):631–640. https://doi.org/10.3920/jiff2021.0121
doi: 10.3920/jiff2021.0121
Jung YH, Park BY, Lee DK, Hahn Y, Chung JH, Han DM, Moon HJ, Lee BL, Lee Y (1995) Biochemical and molecular characterization of an antifungal protein from Tenebrio molitor larvae. Mol Cells 5(3):287–292
Kagata H, Ohgushi T (2012) Positive and negative impacts of insect frass quality on soil nitrogen availability and plant growth. Popul Ecol 54(1):75–82. https://doi.org/10.1007/s10144-011-0281-6
doi: 10.1007/s10144-011-0281-6
Kamarudin MS, Rosle S, Yasin IS (2021) Performance of defatted black soldier fly pre-pupae meal as fishmeal replacement in the diet of lemon fin barb hybrid fingerlings. Aquaculture 21:100775. https://doi.org/10.1016/j.aqrep.2021.100775
doi: 10.1016/j.aqrep.2021.100775
Kelemu S, Niassy S, Torto B, Fiaboe K, Affognon H, Tonnang H, Maniania NK, Ekesi S (2015) African edible insects for food and feed: inventory, diversity, commonalities and contribution to food security. J Insects Food Feed 1(2):103–119. https://doi.org/10.3920/JIFF2014.0016
doi: 10.3920/JIFF2014.0016
Kenis M, Koné N, Chrysostome CA, Devic E, Koko GK, Clottey VA, Nacambo S, Mensah GA (2014) Insects used for animal feed in West Africa. Entomologia 2(2):218. https://doi.org/10.4081/entomologia.2014.218
doi: 10.4081/entomologia.2014.218
Khan S, Khan RU, Alam W, Sultan A (2018) Evaluating the nutritive profile of three insect meals and their effects to replace soya bean in broiler diet. J Anim Physiol Anim Nutr 102(2):e662–e668. https://doi.org/10.1111/jpn.12809
doi: 10.1111/jpn.12809
Khatun H, Claes J, Smets R, De Winne A, Akhtaruzzaman M, Van Der Borght M (2021) Characterization of freeze-dried, oven-dried and blanched house crickets (Acheta domesticus) and Jamaican field crickets (Gryllus assimilis) by means of their physicochemical properties and volatile compounds. Eur Food Res Technol 247(5):1291–1305. https://doi.org/10.1007/s00217-021-03709-x
doi: 10.1007/s00217-021-03709-x
Khayrova A, Lopatin S, Varlamov V (2019) Black soldier fly Hermetia illucens as a novel source of chitin and chitosan. Int J Sci 8(04):81–6. https://doi.org/10.18483/ijSci.2015
doi: 10.18483/ijSci.2015
Kim MW, Han YS, Jo YH, Choi MH, Kang SH, Kim SA, Jung WJ (2016) Extraction of chitin and chitosan from housefly, Musca domestica, pupa shells. Entomol Res 46(5):324–328. https://doi.org/10.1111/1748-5967.12175
doi: 10.1111/1748-5967.12175
Klammsteiner T, Turan V, Fernández-Delgado Juárez M, Oberegger S, Insam H (2020) Suitability of black soldier fly frass as soil amendment and implication for organic waste hygienization. Agronomy 10(10):1578. https://doi.org/10.3390/agronomy10101578
doi: 10.3390/agronomy10101578
Kokou F, Fountoulaki E (2018) Aquaculture waste production associated with antinutrient presence in common fish feed plant ingredients. Aquaculture 495:295–310. https://doi.org/10.1016/j.aquaculture.2018.06.003
doi: 10.1016/j.aquaculture.2018.06.003
Kolawole AA, Ugwumba AA (2018) Economic evaluation of different culture enclosures for Musca domestica larval production and their utilization for Clarias gariepinus (Burchell, 1822) Fingerlings Diets. Not Sci Biol 10(4):466–474
doi: 10.15835/nsb10410271
Kroeckel S, Harjes AG, Roth I, Katz H, Wuertz S, Susenbeth A, Schulz C (2012) When a turbot catches a fly: evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute—growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 364:345–352. https://doi.org/10.1016/j.aquaculture.2012.08.041
doi: 10.1016/j.aquaculture.2012.08.041
Kröncke N, Böschen V, Woyzichovski J, Demtröder S, Benning R (2018) Comparison of suitable drying processes for mealworms (Tenebrio molitor). Innov Food Sci Emerg Technol 50:20–25. https://doi.org/10.1016/j.ifset.2018.10.009
doi: 10.1016/j.ifset.2018.10.009
Kumar V, Fawole FJ, Romano N, Hossain MS, Labh SN, Overturf K, Small BC (2021) Insect (black soldier fly, Hermetia illucens) meal supplementation prevents the soybean meal-induced intestinal enteritis in rainbow trout and health benefits of using insect oil. Fish Shellfish Immunol 109:116–124. https://doi.org/10.1016/j.fsi.2020.12.008
doi: 10.1016/j.fsi.2020.12.008
Lalander C, Diener S, Zurbrügg C, Vinnerås B (2019) Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). J Clean Prod 208:211–219. https://doi.org/10.1016/j.jclepro.2018.10.017
doi: 10.1016/j.jclepro.2018.10.017
Lautenschläger T, Neinhuis C, Kikongo E, Henle T, Förster A (2017) Impact of different preparations on the nutritional value of the edible caterpillar Imbrasia epimethea from northern Angola. Eur Food Res Technol 243(5):769–778. https://doi.org/10.1007/s00217-016-2791-0
doi: 10.1007/s00217-016-2791-0
Lee SW, Tey HC, Wendy W, Wan Zahari M (2017) The effect of house cricket (Acheta domesticus) meal on growth performance of red hybrid tilapia (Oreochromis sp.). J Aquat Sci 8(2):78–82
Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Ann Rev Immunol 25:697–743. https://doi.org/10.1146/annurev.immunol.25.022106.141615
doi: 10.1146/annurev.immunol.25.022106.141615
Lenaerts S, Van Der Borght M, Callens A, Van Campenhout L (2018) Suitability of microwave drying for mealworms (Tenebrio molitor) as alternative to freeze drying: impact on nutritional quality and colour. Food Chem 254:129–136. https://doi.org/10.1016/j.foodchem.2018.02.006
doi: 10.1016/j.foodchem.2018.02.006
Leni G, Caligiani A, Sforza S (2019) Killing method affects the browning and the quality of the protein fraction of Black Soldier Fly (Hermetia illucens) prepupae: a metabolomics and proteomic insight. Food Res Int 115:116–125. https://doi.org/10.1016/j.foodres.2018.08.021
doi: 10.1016/j.foodres.2018.08.021
Li Q, Zheng L, Cai H, Garza E, Yu Z, Zhou S (2011) From organic waste to biodiesel: black soldier fly, Hermetia illucens, makes it feasible. Fuel 90:1545–1548. https://doi.org/10.1016/j.fuel.2010.11.016
doi: 10.1016/j.fuel.2010.11.016
Li N, Xiong X, Ha X, Wei X (2019) Comparative preservation effect of water-soluble and insoluble chitosan from Tenebrio molitor waste. Int J Biol Macromol 133:165–171. https://doi.org/10.1016/j.ijbiomac.2019.04.094
doi: 10.1016/j.ijbiomac.2019.04.094
Li TH, Che PF, Zhang CR, Zhang B, Ali A, Zang LS (2020) Recycling of spent mushroom substrate: utilization as feed material for the larvae of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Plos One 15(8):e0237259. https://doi.org/10.1371/journal.pone.0237259
doi: 10.1371/journal.pone.0237259
Liland NS, Biancarosa I, Araujo P, Biemans D, Bruckner CG, Waagbø R, Torstensen BE, Lock EJ (2017) Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. Plos One 12(8):e0183188. https://doi.org/10.1371/journal.pone.0183188
doi: 10.1371/journal.pone.0183188
Liu Q, Tomberlin JK, Brady JA, Sanford MR, Yu Z (2008) Black soldier fly (Diptera: Stratiomyidae) larvae reduce Escherichia coli in dairy manure. Environ Entomol 37:1525–1530. https://doi.org/10.1603/0046-225x-37.6.1525
doi: 10.1603/0046-225x-37.6.1525
Li L, Zhao Z, Liu H (2013) Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans. Acta Astronaut 92(1):103–109. https://doi.org/10.1016/j.actaastro.2012.03.012
doi: 10.1016/j.actaastro.2012.03.012
Liu X, Chen X, Wang H, Yang Q, Ur Rehman K, Li W, Cai M, Li Q, Mazza L, Zhang J, Yu Z (2017) Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS One 12(8):e0182601. https://doi.org/10.1371/journal.pone.0182601
doi: 10.1371/journal.pone.0182601
Liu Y, Wan S, Liu J, Zou Y, Liao S (2017) Antioxidant activity and stability study of peptides from enzymatically hydrolyzed male silkmoth. J Food Process Preserv 41(1):e13081. https://doi.org/10.1111/jfpp.13081
doi: 10.1111/jfpp.13081
Makkar HP, Tran G, Heuzé V, Ankers P (2014) State-of-the-art on use of insects as animal feed. Anim Feed Sci Technol 197:1–33. https://doi.org/10.1016/j.anifeedsci.2014.07.008
doi: 10.1016/j.anifeedsci.2014.07.008
Melenchón F, Larrán AM, De Mercado E, Hidalgo MC, Cardenete G, Barroso FG, Fabrikov D, Lourenço HM, Pessoa MF, Tomás-Almenar C (2021) Potential use of black soldier fly (Hermetia illucens) and mealworm (Tenebrio molitor) insect meals in diets for rainbow trout (Oncorhynchus mykiss). Aquac Nutr 27(2):491–505. https://doi.org/10.1111/anu.13201
doi: 10.1111/anu.13201
Melgar-Lalanne G, Hernández-Álvarez AJ, Salinas-Castro A (2019) Edible insects processing: traditional and innovative technologies. Compr Rev Food Sci Food Saf 18(4):1166–1191. https://doi.org/10.1111/1541-4337.12463
doi: 10.1111/1541-4337.12463
Melis R, Braca A, Sanna R, Spada S, Mulas G, Fadda ML, Sassu MM, Serra G, Anedda R (2019) Metabolic response of yellow mealworm larvae to two alternative rearing substrates. Metabolomics 15(8):1–3. https://doi.org/10.1007/s11306-019-1578-2
doi: 10.1007/s11306-019-1578-2
Meneguz M, Schiavone A, Gai F, Dama A, Lussiana C, Renna M, Gasco L (2018) Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J Sci Food Agric 98(15):5776–5784. https://doi.org/10.1002/jsfa.9127
doi: 10.1002/jsfa.9127
Meng F, Li B, Xie Y, Li M, Wang R (2020) Substituting fishmeal with extruded soybean meal in diets did not affect the growth performance, hepatic enzyme activities, but hypoxia tolerance of Dolly Varden (Salvelinus malma) juveniles. Aquac Res 51(1):379–388. https://doi.org/10.1111/are.14385
doi: 10.1111/are.14385
Mikołajczak Z, Rawski M, Mazurkiewicz J, Kierończyk B, Józefiak D (2020) The effect of hydrolyzed insect meals in sea trout fingerling (Salmo trutta m. trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals 10(6):1031. https://doi.org/10.3390/ani10061031
doi: 10.3390/ani10061031
Moon HJ, Lee SY, Kurata S, Natori S, Lee BL (1994) Purification and molecular cloning of cDNA for an inducible antibacterial protein from larvae of the coleopteran, Tenebrio molitor. J Biochem 116(1):53–58. https://doi.org/10.1093/oxfordjournals.jbchem.a124309
doi: 10.1093/oxfordjournals.jbchem.a124309
Morin-Crini N, Lichtfouse E, Torri G, Crini G (2019) Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ Chem Lett 17(4):1667–1692. https://doi.org/10.1007/s10311-019-00904-x
doi: 10.1007/s10311-019-00904-x
Mugwanya M, Dawood MAO, Kimera F, Sewilam H (2022) Anthropogenic temperature fluctuations and their effect on aquaculture: a comprehensive review. Aquac Fish 7:223e43. https://doi.org/10.1016/j.aaf.2021.12.005
doi: 10.1016/j.aaf.2021.12.005
Muin H, Taufek NM, Kamarudin MS, Razak SA (2017) Growth performance, feed utilization and body composition of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) fed with different levels of black soldier fly, Hermetia illucens (Linnaeus, 1758) maggot meal diet. Iran J Fish Sci 16(2):567–577. https://doi.org/10.1111/anu.12573
doi: 10.1111/anu.12573
Mutungi C, Irungu FG, Nduko J, Mutua F, Affognon H, Nakimbugwe D, Ekesi S, Fiaboe KK (2019) Postharvest processes of edible insects in Africa: a review of processing methods, and the implications for nutrition, safety and new products development. Crit Rev Food Sci Nutr 59(2):276–298. https://doi.org/10.1080/10408398.2017.1365330
doi: 10.1080/10408398.2017.1365330
Myers HM, Tomberlin JK, Lambert BD, Kattes D (2008) Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure. Environ Entomol 37(1):11–15. https://doi.org/10.1603/0046-225x(2008)37[11:dobsfd]2.0.co;2
doi: 10.1603/0046-225x(2008)37[11:dobsfd]2.0.co;2
Nantanga KK, Amakali T (2020) Diversification of mopane caterpillars (Gonimbrasia belina) edible forms for improved livelihoods and food security. J Arid Environ 177:104148. https://doi.org/10.1016/j.jaridenv.2020.104148
doi: 10.1016/j.jaridenv.2020.104148
Nongonierma AB, FitzGerald RJ (2017) Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: a review. Innov Food Sci Emerg Technol 43:239–252. https://doi.org/10.1016/j.ifset.2017.08.014
doi: 10.1016/j.ifset.2017.08.014
Ogunji JO, Nimptsch J, Wiegand C, Schulz C (2007) Evaluation of the influence of housefly maggot meal (magmeal) diets on catalase, glutathione S-transferase and glycogen concentration in the liver of Oreochromis niloticus fingerling. Comp Biochem Physiol Part A: Mol Integr Physiol 147(4):942–947. https://doi.org/10.1016/j.cbpa.2007.02.028
doi: 10.1016/j.cbpa.2007.02.028
Oliveira CY, Oliveira CD, Prasad R, Ong HC, Araujo ES, Shabnam N, Gálvez AO (2021) A multidisciplinary review of Tetradesmus obliquus: a microalga suitable for large-scale biomass production and emerging environmental applications. Rev Aquac 13(3):1594–1618. https://doi.org/10.1111/raq.12536
doi: 10.1111/raq.12536
Oonincx DG, Dierenfeld ES (2012) An investigation into the chemical composition of alternative invertebrate prey. Zoo Biol 31(1):40–54. https://doi.org/10.1002/zoo.20382
doi: 10.1002/zoo.20382
Pervin M, Jahan H, Akter R, Omri A, Hossain Z (2020) Appraisal of different levels of soybean meal in diets on growth, digestive enzyme activity, antioxidation, and gut histology of tilapia (Oreochromis niloticus). Fish Physiol Biochem 46(4):1397–1407. https://doi.org/10.1007/s10695-020-00798-5
doi: 10.1007/s10695-020-00798-5
Piccolo G, Iaconisi V, Marono S, Gasco L, Loponte R, Nizza S, Bovera F, Parisi G (2017) Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Anim Feed Sci Technol 226:12–20. https://doi.org/10.1016/j.anifeedsci.2017.02.007
doi: 10.1016/j.anifeedsci.2017.02.007
Pinotti L, Caprarulo V, Ottoboni M, Giromini C, Agazzi A, Rossi L, Tretola M, Baldi A, Savoini G, Đuragić O (2016) FEEDNEEDS: trends in R&D in the Italian and Serbian feed sectors. In Italian-Serbian Bilateral Cooperation on Science, Technology and Humanities (ed. Battinelli P, Striber J), pp. 21–25. Museum of Yugoslav History, Belgrade, RS
Prachom N, Boonyoung S, Hassaan MS, El-Haroun E, Davies SJ (2021) Preliminary evaluation of Superworm (Zophobas morio) larval meal as a partial protein source in experimental diets for juvenile Asian sea bass, Lates calcarifer. Aquac Nutr 27(5):1304–1314. https://doi.org/10.1111/anu.13269
doi: 10.1111/anu.13269
Pretorius Q (2011) The evaluation of larvae of Musca domestica (common house fly) as protein source for broiler production. (Doctoral dissertation, Stellenbosch: Stellenbosch University)
Psarianos M, Ojha S, Schneider R, Schlüter OK (2022) Chitin isolation and chitosan production from house crickets (Acheta domesticus) by environmentally friendly methods. Molecules 27(15):5005. https://doi.org/10.3390/molecules27155005
doi: 10.3390/molecules27155005
Purschke B, Brüggen H, Scheibelberger R, Jäger H (2018) Effect of pre-treatment and drying method on physico-chemical properties and dry fractionation behavior of mealworm larvae (Tenebrio molitor L.). Eur Food Res Technol 244(2):269–280. https://doi.org/10.1007/s00217-017-2953-8
doi: 10.1007/s00217-017-2953-8
Quang Tran H, Van Doan H, Stejskal V (2022) Environmental consequences of using insect meal as an ingredient in aqua-feeds: a systematic view. Rev Aquac 14(1):237–251. https://doi.org/10.1111/raq.12595
doi: 10.1111/raq.12595
Quarta AA, Mengali G (2013) Optimal solar sail transfer to linear trajectories. Acta Astronaut 82(2):189–196. https://doi.org/10.1016/j.actaastro.2012.03.005
doi: 10.1016/j.actaastro.2012.03.005
Rahnamaeian M, Cytryńska M, Zdybicka-Barabas A, Dobslaff K, Wiesner J, Twyman RM, Zuchner T, Sadd BM, Regoes RR, Schmid-Hempel P, Vilcinskas A (2015) Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria. Proc Royal Soc B: Bioll Sci 282:20150293. https://doi.org/10.1098/rspb.2015.0293
doi: 10.1098/rspb.2015.0293
Ramos-Elorduy J, Costa Neto EM, Ferreira dos Santos J, Pino Moreno JM, Landero-Torres I, Angeles Campos SC, Garcia Perez A (2006) Comparative survey of the nutritive value of several edible Coleoptera from Mexico and Pachymerus nucleorum (Fabricius, 1792) (Bruchidae) from Brasil. Interciencia 31(7):512–526
Ravi HK, Vian MA, Tao Y, Degrou A, Costil J, Trespeuch C, Chemat F (2019) Alternative solvents for lipid extraction and their effect on protein quality in black soldier fly (Hermetia illucens) larvae. J Clean Prod 238:117861. https://doi.org/10.1016/j.jclepro.2019.117861
doi: 10.1016/j.jclepro.2019.117861
Rema P, Saravanan S, Armenjon B, Motte C, Dias J (2019) Graded incorporation of defatted yellow mealworm (Tenebrio molitor) in rainbow trout (Oncorhynchus mykiss) diet improves growth performance and nutrient retention. Animals 9(4):187. https://doi.org/10.3390/ani9040187
doi: 10.3390/ani9040187
Roh KB, Kim CH, Lee H, Kwon HM, Park JW, Ryu JH, Kurokawa K, Ha NC, Lee WJ, Lemaitre B, Söderhäll K (2009) Proteolytic cascade for the activation of the insect toll pathway induced by the fungal cell wall component. J Biol Chem 284(29):19474–194781. https://doi.org/10.1074/jbc.m109.007419
doi: 10.1074/jbc.m109.007419
Rumbos CI, Athanassiou CG (2021) The superworm, Zophobas morio (Coleoptera: Tenebrionidae): a ‘sleeping giant’ in nutrient sources. J Insect Sci 21(20):13. https://doi.org/10.1093/jisesa/ieab014
doi: 10.1093/jisesa/ieab014
Rumbos CI, Bliamplias D, Gourgouta M, Michail V, Athanassiou CG (2021) Rearing Tenebrio molitor and Alphitobius diaperinus larvae on seed cleaning process byproducts. Insects 12(4):293. https://doi.org/10.3390/insects12040293
doi: 10.3390/insects12040293
Rumpold BA, Schlüter OK (2013) Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res 57(5):802–823. https://doi.org/10.1002/mnfr.201200735
doi: 10.1002/mnfr.201200735
Sánchez-Muros MJ, Barroso FG, Manzano-Agugliaro F (2014) Insect meal as renewable source of food for animal feeding: a review. J Clean Prod 65:16–27. https://doi.org/10.1016/j.jclepro.2013.11.068
doi: 10.1016/j.jclepro.2013.11.068
Sánchez-Muros M, De Haro C, Sanz A, Trenzado CE, Villareces S, Barroso FG (2016) Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquac Nutr 22(5):943–955. https://doi.org/10.1111/anu.12313
doi: 10.1111/anu.12313
Schiavone A, De Marco M, Martínez S, Dabbou S, Renna M, Madrid J, Hernandez F, Rotolo L, Costa P, Gai F, Gasco L (2017) Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J Anim Sci Biotechnol 8(1):1–9. https://doi.org/10.1186/s40104-017-0181-5
doi: 10.1186/s40104-017-0181-5
Sealey WM, Gaylord TG, Barrows FT, Tomberlin JK, McGuire MA, Ross C, St-Hilaire S (2011) Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia Illucens. J World Aquac Soc 42(1):34–45. https://doi.org/10.1111/j.1749-7345.2010.00441.x
doi: 10.1111/j.1749-7345.2010.00441.x
Sheppard DC (1983) House fly and lesser fly control utilizing the black soldier fly in manure management systems for caged laying hens. Environ Entomol 12(5):1439–1442. https://doi.org/10.1093/ee/12.5.1439
doi: 10.1093/ee/12.5.1439
Smets R, Verbinnen B, Van De Voorde I, Aerts G, Claes J, Van Der Borght M (2020) Sequential extraction and characterisation of lipids, proteins, and chitin from black soldier fly (Hermetia illucens) larvae, prepupae, and pupae. Waste Biomass Valor 11(12):6455–6466. https://doi.org/10.1007/s12649-019-00924-2
doi: 10.1007/s12649-019-00924-2
Soetemans L, Uyttebroek M, Bastiaens L (2020) Characteristics of chitin extracted from black soldier fly in different life stages. Int J Biol Macromol 165:3206–14. https://doi.org/10.1016/j.ijbiomac.2020.11.041
doi: 10.1016/j.ijbiomac.2020.11.041
Son YJ, Hwang IK, Nho CW, Kim SM, Kim SH (2021) Determination of carbohydrate composition in mealworm (Tenebrio molitor L.) larvae and characterization of mealworm chitin and chitosan. Foods 10(3):640. https://doi.org/10.3390/foods10030640
doi: 10.3390/foods10030640
Song YS, Kim MW, Moon C, Seo DJ, Han YS, Jo YH, Noh MY, Park YK, Kim SA, Kim YW, Jung WJ (2018) Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm, Tenebrio molitor. Entomol Res 48(3):227–233. https://doi.org/10.1111/1748-5967.12304
doi: 10.1111/1748-5967.12304
Soon CY, Tee YB, Tan CH, Rosnita AT, Khalina A (2018) Extraction and physicochemical characterization of chitin and chitosan from Zophobas morio larvae in varying sodium hydroxide concentration. Int J Biolo Macromol 108:135–142. https://doi.org/10.1016/j.ijbiomac.2017.11.138
doi: 10.1016/j.ijbiomac.2017.11.138
Sorjonen JM, Valtonen A, Hirvisalo E, Karhapää M, Lehtovaara VJ, Lindgren J, Marnila P, Mooney P, Mäki M, Siljander-Rasi H, Tapio M (2019) The plant-based by-product diets for the mass-rearing of Acheta domesticus and Gryllus bimaculatus. PLoS One 14(6):e0218830. https://doi.org/10.1371/journal.pone.0218830
doi: 10.1371/journal.pone.0218830
Spiegel Y, Chet I, Cohn E (1987) Use of chitin for controlling plant plant-parasitic nematodes. Plant Soil 98(3):337–345. https://www.jstor.org/stable/42935774
Spranghers T, Ottoboni M, Klootwijk C, Ovyn A, Deboosere S, De Meulenaer B, Michiels J, Eeckhout M, De Clercq P, De Smet S (2017) Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J Sci Food Agric 97(8):2594–2600. https://doi.org/10.1002/jsfa.8081
doi: 10.1002/jsfa.8081
Spranghers T, Michiels J, Vrancx J, Ovyn A, Eeckhout M, De Clercq P, De Smet S (2018) Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim Feed Sci Technol 235:33–42. https://doi.org/10.1016/j.anifeedsci.2017.08.012
doi: 10.1016/j.anifeedsci.2017.08.012
St-Hilaire S, Cranfill K, McGuire MA, Mosley EE, Tomberlin JK, Newton L, Sealey W, Sheppard C, Irving S (2007a) Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J World Aquac Soc 38(2):309–313. https://doi.org/10.1111/j.1749-7345.2007.00101.x
doi: 10.1111/j.1749-7345.2007.00101.x
St-Hilaire S, Sheppard C, Tomberlin JK, Irving S, Newton L, McGuire MA, Mosley EE, Hardy RW, Sealey W (2007b) Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus Mykiss. J World Aquac Soc 38(1):59–67. https://doi.org/10.1111/j.1749-7345.2006.00073.x
doi: 10.1111/j.1749-7345.2006.00073.x
Sun-Waterhouse D, Waterhouse GI, You L, Zhang J, Liu Y, Ma L, Gao J, Dong Y (2016) Transforming insect biomass into consumer wellness foods: a review. Food Res Int 89:129–151. https://doi.org/10.1016/j.foodres.2016.10.001
doi: 10.1016/j.foodres.2016.10.001
Tao M, Wang C, Liao D, Liu H, Zhao Z, Zhao Z (2017) Purification, modification and inhibition mechanism of angiotensin I-converting enzyme inhibitory peptide from silkworm pupa (Bombyx mori) protein hydrolysate. Process Biochem 54:172–179. https://doi.org/10.1016/j.procbio.2016.12.022
doi: 10.1016/j.procbio.2016.12.022
Tilami SK, Turek J, Červený D, Lepič P, Kozák P, Burkina V, Sakalli S, Tomčala A, Sampels S, Mráz J (2020) Insect meal as a partial replacement for fish meal in a formulated diet for perch Perca fluviatilis. Turk J Fish Aquat Sci 20(12):867–878. https://doi.org/10.4194/1303-2712-v20_12_03
doi: 10.4194/1303-2712-v20_12_03
Tippayadara N, Dawood MA, Krutmuang P, Hoseinifar SH, Doan HV, Paolucci M (2021) Replacement of fish meal by black soldier fly (Hermetia illucens) larvae meal: effects on growth, haematology, and skin mucus immunity of Nile tilapia, Oreochromis niloticus. Animals 11(1):193. https://doi.org/10.3390/ani11010193
doi: 10.3390/ani11010193
Turchini GM, Trushenski JT, Glencross BD (2019) Thoughts for the future of aquaculture nutrition: realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aqua-feeds. N Am J Aquac 81(1):13–39. https://doi.org/10.1002/naaq.10067
doi: 10.1002/naaq.10067
Tveterås S, Tveterås R (2010) The global competition for wild fish resources between livestock and aquaculture. J Agric Econ 61(2):381–397
doi: 10.1111/j.1477-9552.2010.00245.x
van der Fels-Klerx HJ, Camenzuli L, Belluco S, Meijer N, Ricci A (2018) Food safety issues related to uses of insects for feeds and foods. Compr Rev Food Sci Food Saf 17(5):1172–1183. https://doi.org/10.1111/1541-4337.12385
doi: 10.1111/1541-4337.12385
Van der Spiegel M, Noordam MY, Van der Fels-Klerx HJ (2013) Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production. Compr Rev Food Sci Food Saf 12(6):662–678. https://doi.org/10.1111/1541-4337.12032
doi: 10.1111/1541-4337.12032
Van Huis A (2003) Insects as food in sub-Saharan Africa. Int J Trop Insect Sci 23(3):163–85
doi: 10.1017/S1742758400023572
Van Huis A (2013) Potential of insects as food and feed in assuring food security. Annu Rev Entomol 58:563–583. https://doi.org/10.1146/annurev-ento-120811-153704
doi: 10.1146/annurev-ento-120811-153704
Veldkamp T, Bosch G (2015) Insects: a protein-rich feed ingredient in pig and poultry diets. Anim Front 5(2):45–50. https://doi.org/10.2527/af.2015-0019
doi: 10.2527/af.2015-0019
Vercruysse L, Smagghe G, Beckers T, Van Camp J (2009) Antioxidative and ACE inhibitory activities in enzymatic hydrolysates of the cotton leafworm, Spodoptera littoralis. Food Chem 114(1):38–43. https://doi.org/10.1016/j.foodchem.2008.09.011
doi: 10.1016/j.foodchem.2008.09.011
Vercruysse L, Van Camp J, Morel N, Rougé P, Herregods G, Smagghe G (2010) Ala-Val-Phe and Val-Phe: ACE inhibitory peptides derived from insect protein with antihypertensive activity in spontaneously hypertensive rats. Peptides 31(3):482–488. https://doi.org/10.1016/j.peptides.2009.05.029
doi: 10.1016/j.peptides.2009.05.029
Vrabec V, Kulma M, Cocan, D (2015) Insects as an alternative protein source for animal feeding: a short review about chemical composition. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Anim Sci Biotechnol 72(2):116-126. https://doi.org/10.15835/buasvmcn-asb:11656
Wang H, Zhang Z, Czapar GF, Winkler MK, Zheng J (2013) A full-scale house fly (Diptera: Muscidae) larvae bioconversion system for value-added swine manure reduction. Waste Manag Res 31(2):223–231. https://doi.org/10.1177/0734242X12469431
doi: 10.1177/0734242X12469431
Xiao HW, Bai JW, Sun DW, Gao ZJ (2014) The application of superheated steam impingement blanching (SSIB) in agricultural products processing–a review. J Food Eng 132:39–47. https://doi.org/10.1016/j.jfoodeng.2014.01.032
doi: 10.1016/j.jfoodeng.2014.01.032
Xu C, Mou B (2018) Chitosan as soil amendment affects lettuce growth, photochemical efficiency, and gas exchange. HortTechnology 28(4):476–480
doi: 10.21273/HORTTECH04032-18
Yang SS, Kang JH, Xie TR, He L, Xing DF, Ren NQ, Ho SH, Wu WM (2019) Generation of high-efficient biochar for dye adsorption using frass of yellow mealworms (larvae of Tenebrio molitor Linnaeus) fed with wheat straw for insect biomass production. J Clean Prod 227:33–47. https://doi.org/10.1016/j.jclepro.2019.04.005
doi: 10.1016/j.jclepro.2019.04.005
Ye H, Xu M, Liu Q, Sun Z, Zou C, Chen L, Su N, Ye C (2019) Effects of replacing fish meal with soybean meal on growth performance, feed utilization and physiological status of juvenile obscure puffer, Takifugu obscurus. Comp Biochem Physiol Part C: Toxicol Pharmacol 216:75–81. https://doi.org/10.1016/j.cbpc.2018.11.006
doi: 10.1016/j.cbpc.2018.11.006
Yi L, Lakemond CM, Sagis LM, Eisner-Schadler V, van Huis A, van Boekel MA (2013) Extraction and characterisation of protein fractions from five insect species. Food Chem 141(4):3341–3348. https://doi.org/10.1016/j.foodchem.2013.05.115
doi: 10.1016/j.foodchem.2013.05.115
Yi HY, Chowdhury M, Huang YD, Yu XQ (2014) Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 98(13):5807–5822. https://doi.org/10.1007/s00253-014-5792-6
doi: 10.1007/s00253-014-5792-6
Zainol Abidin NA, Kormin F, Zainol Abidin NA, Mohamed Anuar NA, Abu Bakar MF (2020) The potential of insects as alternative sources of chitin: an overview on the chemical method of extraction from various sources. Int J Mol Sci 21(14):4978. https://doi.org/10.3390/ijms21144978
doi: 10.3390/ijms21144978
Zhou JS, Liu SS, Ji H, Yu HB (2018) Effect of replacing dietary fish meal with black soldier fly larva meal on growth and fatty acid composition of Jian carp (Cyprinus carpio var. Jian). Aquac Nutr 24:424e33. https://doi.org/10.1111/anu.12574
doi: 10.1111/anu.12574
Zhu FX, Yao YL, Wang SJ, Du RG, Wang WP, Chen XY, Hong CL, Qi B, Xue ZY, Yang HQ (2015) Housefly maggot-treated composting as sustainable option for pig manure management. Waste Manag 35:62–67. https://doi.org/10.1016/j.wasman.2014.10.005
doi: 10.1016/j.wasman.2014.10.005
Zielińska E, Karaś M, Jakubczyk A (2017) Antioxidant activity of predigested protein obtained from a range of farmed edible insects. Int J Food Sci Technol 52(2):306–312. https://doi.org/10.1111/ijfs.13282
doi: 10.1111/ijfs.13282
Zuidhof MJ, Molnar CL, Morley FM, Wray TL, Robinson FE, Khan BA, Al-Ani L, Goonewardene LA (2003) Nutritive value of house fly (Musca domestica) larvae as a feed supplement for turkey poults. Anim Feed Science Technol 105(1–4):225–230. https://doi.org/10.1016/S0377-8401(03)00004-X
doi: 10.1016/S0377-8401(03)00004-X

Auteurs

Soibam Khogen Singh (SK)

Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India. gengang@gmail.com.

Lokesh Pawar (L)

Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India.

Akhil Joe Thomas (AJ)

Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India.

Reshmi Debbarma (R)

Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India.

Pradyut Biswas (P)

Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India.

Arati Ningombam (A)

ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, 795004, Manipur, India.

Ayam Gangarani Devi (AG)

ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Tripura West, 799210, India.

Gusheinzed Waikhom (G)

Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India.

Arun Bhai Patel (AB)

Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India.

Dharmendra Kumar Meena (DK)

ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India.

Gunimala Chakraborty (G)

NITTE University Centre for Science Education & Research, Mangalore, 575018, India.

Classifications MeSH