Expression of stem cell markers SALL4, LIN28A, and KLF4 in ameloblastoma.
Ameloblastoma
Immunofluorescence
Immunohistochemistry
Neoplasm invasiveness
Stem cells
Journal
Diagnostic pathology
ISSN: 1746-1596
Titre abrégé: Diagn Pathol
Pays: England
ID NLM: 101251558
Informations de publication
Date de publication:
09 Aug 2023
09 Aug 2023
Historique:
received:
14
07
2023
accepted:
02
08
2023
medline:
11
8
2023
pubmed:
10
8
2023
entrez:
9
8
2023
Statut:
epublish
Résumé
Ameloblastoma (AME) is a benign odontogenic tumour of epithelial origin characterised by slow but aggressive growth, infiltration, and recurrence; it is capable of reaching large dimensions and invading adjacent structures. Stem cell research has proven to be significant in the sphere of tumour biology through these cells' possible involvement in the aetiopathogenesis of this tumour. Immunohistochemistry was performed on AME, dentigerous cyst (DC), and dental follicle (DF) samples, and indirect immunofluorescence was performed on the AME-hTERT cell line to determine the expression of SALL4, LIN28A, and KLF4. Expression of proteins related to cellular pluripotency was higher in AME cells than in DC and DF cells. The analysis revealed that the proteins in question were mainly expressed in the parenchyma of AME tissue samples and were detected in the nuclei of AME-hTERT cells. Stem cells may be related to the origin and progression of AME.
Sections du résumé
BACKGROUND
BACKGROUND
Ameloblastoma (AME) is a benign odontogenic tumour of epithelial origin characterised by slow but aggressive growth, infiltration, and recurrence; it is capable of reaching large dimensions and invading adjacent structures. Stem cell research has proven to be significant in the sphere of tumour biology through these cells' possible involvement in the aetiopathogenesis of this tumour.
METHODS
METHODS
Immunohistochemistry was performed on AME, dentigerous cyst (DC), and dental follicle (DF) samples, and indirect immunofluorescence was performed on the AME-hTERT cell line to determine the expression of SALL4, LIN28A, and KLF4.
RESULTS
RESULTS
Expression of proteins related to cellular pluripotency was higher in AME cells than in DC and DF cells. The analysis revealed that the proteins in question were mainly expressed in the parenchyma of AME tissue samples and were detected in the nuclei of AME-hTERT cells.
CONCLUSIONS
CONCLUSIONS
Stem cells may be related to the origin and progression of AME.
Identifiants
pubmed: 37559082
doi: 10.1186/s13000-023-01379-9
pii: 10.1186/s13000-023-01379-9
pmc: PMC10413759
doi:
Substances chimiques
SALL4 protein, human
0
Transcription Factors
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
92Informations de copyright
© 2023. BioMed Central Ltd., part of Springer Nature.
Références
Mendenhall WM, Werning JW, Fernandes R, Malyapa RS, Mendenhall NP. Ameloblastoma. Am J Clin Oncol. 2007;30(6):645–8. https://doi.org/10.1097/COC.0b013e3181573e59 . American Journal of Clinical Oncology Database. https://journals.lww.com/amjclinicaloncology/Abstract/2007/12000/Ameloblastoma.13.aspx . Accessed 21 May 2023.
doi: 10.1097/COC.0b013e3181573e59
pubmed: 18091060
Bassey GO, Osunde OD, Anyanechi CE. Maxillofacial tumors and tumor-like lesions in a Nigerian teaching hospital: an eleven year retrospective analysis. Afr Health Sci. 2014;14(1):56–63. https://doi.org/10.4314/ahs.v14i1.9 . PubMed Database. https://pubmed.ncbi.nlm.nih.gov/26060458/ . Accessed 22 May 2023.
doi: 10.4314/ahs.v14i1.9
pubmed: 26060458
pmcid: 4449058
Effiom OA, Ogundana OM, Akinshipo AO, Akintoye SO. Ameloblastoma: current etiopathological concepts and management. Oral Dis. 2018;24(3):307–16. https://doi.org/10.1111/odi.12646 . Oral Diseases Database. https://onlinelibrary.wiley.com/doi/full/10.1111/odi.12646 . Accessed 21 May 2023.
doi: 10.1111/odi.12646
pubmed: 28142213
Vered M, Wright JM. Update from the 5th Edition of the World Health Organization classification of head and neck tumors: odontogenic and maxillofacial bone tumours. Head Neck Pathol. 2022;16(1):63–75. https://doi.org/10.1007/s12105-021-01404-7 . Head and Neck Pathology Database.
doi: 10.1007/s12105-021-01404-7
pubmed: 35312978
pmcid: 9019005
Dandriyal R, Gupta A, Pant S, Baweja HH. Surgical management of ameloblastoma: conservative or radical approach. Natl J Maxillofac Surg. 2011;2(1):22–7. https://doi.org/10.4103/0975-5950.85849 . National Journal of Maxillofacial Surgery Database.
doi: 10.4103/0975-5950.85849
pubmed: 22442605
pmcid: 3304226
Almeida Rde A, Andrade ES, Barbalho JC, Vajgel A, Vasconcelos BC. Recurrence rate following treatment for primary multicystic ameloblastoma: systematic review and meta-analysis. Int J Oral Maxillofac Surg. 2016;45(3):359–67. https://doi.org/10.1016/j.ijom.2015.12.016 . International Journal of Oral and Maxillofacial Surgery Database. https://www.ijoms.com/article/S0901-5027(15)01484-8/fulltext . Accessed 22 May 2023.
doi: 10.1016/j.ijom.2015.12.016
pubmed: 26792147
Masthan KM, Anitha N, Krupaa J, Manikkam S. Ameloblastoma. J Pharm Bioallied Sci. 2015;7(Suppl 1):S167–70. https://doi.org/10.4103/0975-7406.155891 . Journal of Pharmacy and Bioallied Sciences Database. https://journals.lww.com/jpbs/Fulltext/2015/07001/Ameloblastoma.46.aspx . Accessed 22 May 2023.
doi: 10.4103/0975-7406.155891
pubmed: 26015700
pmcid: 4439660
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11. https://doi.org/10.1038/35102167 . Nature Journal Database. https://www.nature.com/articles/35102167 . Accessed 21 May 2023.
doi: 10.1038/35102167
pubmed: 11689955
Silva FP, Dias A, Coelho CA, Guerra EN, Marques AE, Decurcio DA, Mantesso A, Cury SE, Silva BS. Expression of CD90 and P75NTR stem cell markers in ameloblastomas: a possible role in their biological behavior. Braz Oral Res. 2016;30(1):e109. https://doi.org/10.1590/1807-3107BOR-2016.vol30.0109 . Brazilian Oral Research Database. https://www.scielo.br/j/bor/a/NFQwSWgmGTf5kfhZSYJCTcs/?lang=en . Accessed 22 May 2023.
doi: 10.1590/1807-3107BOR-2016.vol30.0109
pubmed: 27737362
Balbinot KM, Almeida Loureiro FJ, Chemelo GP, Alves Mesquita R, Cruz Ramos AMP, Ramos RTJ, da Costa da Silva AL, de Menezes SAF, da Silva Kataoka MS, Alves Junior SM, Viana Pinheiro JJ. Immunoexpression of stem cell markers SOX-2, NANOG AND OCT4 in ameloblastoma. PeerJ. 2023;11:e14349. https://doi.org/10.7717/peerj.14349 . PeerJ Database. https://peerj.com/articles/14349/ . Accessed 22 May 2023.
doi: 10.7717/peerj.14349
Harada H, Mitsuyasu T, Toyono T, Toyoshima K. Epithelial stem cells in teeth. Odontology. 2002;90(1):1–6. https://doi.org/10.1007/s102660200000 . SpringerLink Database. https://link.springer.com/article/10.1007/s102660200000 . Accessed 22 May 2023.
doi: 10.1007/s102660200000
pubmed: 12955558
Wu C, Alman BA. Side population cells in human cancers. Cancer Lett. 2008;268(1):1–9. https://doi.org/10.1016/j.canlet.2008.03.048 . Science Direct Database. https://www.sciencedirect.com/science/article/abs/pii/S0304383508002231?via%3Dihub . Accessed 22 May 2023.
doi: 10.1016/j.canlet.2008.03.048
pubmed: 18487012
O’Connor ML, Xiang D, Shigdar S, Macdonald J, Li Y, Wang T, Pu C, Wang Z, Qiao L, Duan W. Cancer stem cells: a contentious hypothesis now moving forward. Cancer Lett. 2014;344(2):180–7. https://doi.org/10.1016/j.canlet.2013.11.012 .
doi: 10.1016/j.canlet.2013.11.012
pubmed: 24333726
Zhang X, Yuan X, Zhu W, Qian H, Xu W. SALL4: an emerging cancer biomarker and target. Cancer Lett. 2015;357(1):55–62. https://doi.org/10.1016/j.canlet.2014.11.037 .
doi: 10.1016/j.canlet.2014.11.037
pubmed: 25444934
Yu NK, McClatchy DB, Diedrich JK, Romero S, Choi JH, Martínez-Bartolomé S, Delahunty CM, Muotri AR, Yates JR 3rd. Interactome analysis illustrates diverse gene regulatory processes associated with LIN28A in human iPS cell-derived neural progenitor cells. iScience. 2021;24(11):103321. https://doi.org/10.1016/j.isci.2021.103321 .
doi: 10.1016/j.isci.2021.103321
pubmed: 34816099
pmcid: 8593586
Yadav SS, Nair RR, Yadava PK. KLF4 signalling in carcinogenesis and epigenetic regulation of hTERT. Med Hypotheses. 2018;115:50–3. https://doi.org/10.1016/j.mehy.2018.03.012 .
doi: 10.1016/j.mehy.2018.03.012
pubmed: 29685197
Kohlhase J, Heinrich M, Schubert L, Liebers M, Kispert A, Laccone F, Turnpenny P, Winter RM, Reardon W. Okihiro syndrome is caused by SALL4 mutations. Hum Mol Genet. 2002;11(23):2979–87. https://doi.org/10.1093/hmg/11.23.2979 .
doi: 10.1093/hmg/11.23.2979
pubmed: 12393809
Gao C, Kong NR, Li A, Tatetu H, Ueno S, Yang Y, He J, Yang J, Ma Y, Kao GS, Tenen DG, Chai L. SALL4 is a key transcription regulator in normal human hematopoiesis. Transfusion. 2013;53(5):1037–49. https://doi.org/10.1111/j.1537-2995.2012.03888.x .
doi: 10.1111/j.1537-2995.2012.03888.x
pubmed: 22934838
Wang F, Zhao W, Kong N, Cui W, Chai L. The next new target in leukemia: The embryonic stem cell gene SALL4. Mol Cell Oncol. 2014;1(4):e969169. https://doi.org/10.4161/23723548.2014.969169 .
doi: 10.4161/23723548.2014.969169
pubmed: 25977939
pmcid: 4428154
Miettinen M, Wang Z, McCue PA, Sarlomo-Rikala M, Rys J, Biernat W, Lasota J, Lee YS. SALL4 expression in germ cell and non-germ cell tumors: a systematic immunohistochemical study of 3215 cases. Am J Surg Pathol. 2014;38(3):410–20. https://doi.org/10.1097/PAS.0000000000000116 .
doi: 10.1097/PAS.0000000000000116
pubmed: 24525512
pmcid: 4041084
Mei K, Liu A, Allan RW, Wang P, Lane Z, Abel TW, Wei L, Cheng H, Guo S, Peng Y, Rakheja D, Wang M, Ma J, Rodriguez MM, Li J, Cao D. Diagnostic utility of SALL4 in primary germ cell tumors of the central nervous system: a study of 77 cases. Mod Pathol. 2009;22(12):1628–36. https://doi.org/10.1038/modpathol.2009.148 .
doi: 10.1038/modpathol.2009.148
pubmed: 19820689
Cao D, Li J, Guo CC, Allan RW, Humphrey PA. SALL4 is a novel diagnostic marker for testicular germ cell tumors. Am J Surg Pathol. 2009;33(7):1065–77. https://doi.org/10.1097/PAS.0b013e3181a13eef .
doi: 10.1097/PAS.0b013e3181a13eef
pubmed: 19390421
Zhou W, Zou B, Liu L, Cui K, Gao J, Yuan S, Cong N. MicroRNA-98 acts as a tumor suppressor in hepatocellular carcinoma via targeting SALL4. Oncotarget. 2016;7(45):74059–73. https://doi.org/10.18632/oncotarget.12190 .
doi: 10.18632/oncotarget.12190
pubmed: 27677076
pmcid: 5342035
Yong KJ, Li A, Ou WB, Hong CK, Zhao W, Wang F, Tatetsu H, Yan B, Qi L, Fletcher JA, Yang H, Soo R, Tenen DG, Chai L. Targeting SALL4 by entinostat in lung cancer. Oncotarget. 2016;7(46):75425–40. https://doi.org/10.18632/oncotarget.12251 .
doi: 10.18632/oncotarget.12251
pubmed: 27705911
pmcid: 5342750
Balzeau J, Menezes MR, Cao S, Hagan JP. The LIN28/let-7 pathway in cancer. Front Genet. 2017;8:31. https://doi.org/10.3389/fgene.2017.00031 .
doi: 10.3389/fgene.2017.00031
pubmed: 28400788
pmcid: 5368188
Feng C, Neumeister V, Ma W, Xu J, Lu L, Bordeaux J, Maihle NJ, Rimm DL, Huang Y. Lin28 regulates HER2 and promotes malignancy through multiple mechanisms. Cell Cycle. 2012;11(13):2486–94. https://doi.org/10.4161/cc.20893 .
doi: 10.4161/cc.20893
pubmed: 22713243
Thornton JE, Gregory RI. How does Lin28 let-7 control development and disease? Trends Cell Biol. 2012;22(9):474–82. https://doi.org/10.1016/j.tcb.2012.06.001 .
doi: 10.1016/j.tcb.2012.06.001
pubmed: 22784697
pmcid: 3432650
Wu K, Ahmad T, Eri R. LIN28: a multifunctional versatile molecule with future therapeutic potential. World J Biol Chem. 2022;13(2):35–46. https://doi.org/10.4331/wjbc.v13.i2.35 .
doi: 10.4331/wjbc.v13.i2.35
pubmed: 35432768
pmcid: 8966501
Schmidt R, Plath K. The roles of the reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic cell epigenome during induced pluripotent stem cell generation. Genome Biol. 2012;13(10):251. https://doi.org/10.1186/gb-2012-13-10-251 . Published 2012 Oct 22.
doi: 10.1186/gb-2012-13-10-251
pubmed: 23088445
pmcid: 3491406
Huang D, Wei Z, Lu W. Genome organization by Klf4 regulates transcription in pluripotent stem cells. Cell Cycle. 2013;12(21):3351–2. https://doi.org/10.4161/cc.26577 .
doi: 10.4161/cc.26577
pubmed: 24091533
pmcid: 3895421
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13. https://doi.org/10.1093/nar/gky1131 .
doi: 10.1093/nar/gky1131
pubmed: 30476243
Cruz E, Loureiro F, Silva A, Ramos RT, Kataoka M, Pinheiro J, Alves Júnior SM. Gene expression in cell lines from human ameloblastoma immortalized using hTERT and HPV16-E6/E7. Oral Dis. 2022;8:2230–8.
doi: 10.1111/odi.13930
Lim CY, Tam WL, Zhang J, Ang HS, Jia H, Lipovich L, Ng HH, Wei CL, Sung WK, Robson P, Yang H, Lim B. Sall4 regulates distinct transcription circuitries in different blastocyst-derived stem cell lineages. Cell Stem Cell. 2008;3(5):543–54. https://doi.org/10.1016/j.stem.2008.08.004 .
doi: 10.1016/j.stem.2008.08.004
pubmed: 18804426
Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, Lou Y, Yang J, Ma Y, Chai L, Ng HH, Lufkin T, Robson P, Lim B. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol. 2006;8(10):1114–23. https://doi.org/10.1038/ncb1481 .
doi: 10.1038/ncb1481
pubmed: 16980957
Aguila JR, Liao W, Yang J, Avila C, Hagag N, Senzel L, Ma Y. SALL4 is a robust stimulator for the expansion of hematopoietic stem cells. Blood. 2011;118(3):576–85. https://doi.org/10.1182/blood-2011-01-333641 .
doi: 10.1182/blood-2011-01-333641
pubmed: 21602528
pmcid: 3142902
Kulkarni S, Solomon M, Chandrashekar C, Shetty N, Carnelio S. Spalt-like transcription factor 4 expression in oral epithelial dysplasia and oral squamous cell carcinoma: an immunohistochemical appraisal. J Carcinog. 2020;19:12. https://doi.org/10.4103/jcar.JCar_13_20 .
doi: 10.4103/jcar.JCar_13_20
pubmed: 33679242
pmcid: 7921777
Ota K, Shinriki S, Ando Y, Nakayama H, Shinohara M. Overexpression of the novel oncogene SALL4 in oral squamous cell carcinoma. Int J Oral Maxillofac Surg. 2015;44:e272.
doi: 10.1016/j.ijom.2015.08.271
Yu HH, Featherston T, Tan ST, Chibnall AM, Brasch HD, Davis PF, Itinteang T. Characterization of cancer stem cells in moderately differentiated buccal mucosal squamous cell carcinoma. Front Surg. 2016;3:46. https://doi.org/10.3389/fsurg.2016.00046 .
doi: 10.3389/fsurg.2016.00046
pubmed: 27532037
pmcid: 4970507
Yang J, Aguila JR, Alipio Z, Lai R, Fink LM, Ma Y. Enhanced self-renewal of hematopoietic stem/progenitor cells mediated by the stem cell gene Sall4. J Hematol Oncol. 2011;4:38. https://doi.org/10.1186/1756-8722-4-38 .
doi: 10.1186/1756-8722-4-38
pubmed: 21943195
pmcid: 3184628
Yue X, Xiao L, Yang Y, Liu W, Zhang K, Shi G, Zhou H, Geng J, Ning X, Wu J, Zhang Q. High cytoplasmic expression of SALL4 predicts a malignant phenotype and poor prognosis of breast invasive ductal carcinoma. Neoplasma. 2015;62(6):980–8. https://doi.org/10.4149/neo_2015_119 .
doi: 10.4149/neo_2015_119
pubmed: 26458308
Liu X, Cao Y, Zhang Y, Zhou H, Li H. Regulatory effect of MiR103 on proliferation, EMT and invasion of oral squamous carcinoma cell through SALL4. Eur Rev Med Pharmacol Sci. 2019;23(22):9931–8. https://doi.org/10.26355/eurrev_201911_19559 . Retraction in: Eur Rev Med Pharmacol Sci. 2021 Jan;25(2):569.
doi: 10.26355/eurrev_201911_19559
pubmed: 31799662
Chirshev E, Oberg KC, Ioffe YJ, Unternaehrer JJ. Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin Transl Med. 2019;8(1):24. https://doi.org/10.1186/s40169-019-0240-y .
doi: 10.1186/s40169-019-0240-y
pubmed: 31468250
pmcid: 6715759
Ustianenko D, Chiu HS, Treiber T, Weyn-Vanhentenryck SM, Treiber N, Meister G, Sumazin P, Zhang C. LIN28 selectively modulates a subclass of Let-7 MicroRNAs. Mol Cell. 2018;71(2):271–283.e5. https://doi.org/10.1016/j.molcel.2018.06.029 .
doi: 10.1016/j.molcel.2018.06.029
pubmed: 30029005
pmcid: 6238216
Zhu H, Shyh-Chang N, Segrè AV, et al. The Lin28/let-7 axis regulates glucose metabolism. Cell. 2011;147(1):81–94. https://doi.org/10.1016/j.cell.2011.08.033 .
doi: 10.1016/j.cell.2011.08.033
pubmed: 21962509
pmcid: 3353524
Mayr F, Heinemann U. Mechanisms of Lin28-mediated miRNA and mRNA regulation–a structural and functional perspective. Int J Mol Sci. 2013;14(8):16532–53. https://doi.org/10.3390/ijms140816532 .
doi: 10.3390/ijms140816532
pubmed: 23939427
pmcid: 3759924
Zhang J, Ratanasirintrawoot S, Chandrasekaran S, Wu Z, Ficarro SB, Yu C, Ross CA, Cacchiarelli D, Xia Q, Seligson M, Shinoda G, Xie W, Cahan P, Wang L, Ng SC, Tintara S, Trapnell C, Onder T, Loh YH, Mikkelsen T, Sliz P, Teitell MA, Asara JM, Marto JA, Li H, Collins JJ, Daley GQ. LIN28 regulates stem cell metabolism and conversion to primed pluripotency. Cell Stem Cell. 2016;19(1):66–80. https://doi.org/10.1016/j.stem.2016.05.009 .
doi: 10.1016/j.stem.2016.05.009
pubmed: 27320042
Moss EG, Tang L. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev Biol. 2003;258(2):432–42. https://doi.org/10.1016/s0012-1606(03)00126-x . Erratum in: Dev Biol. 2003 Oct 15;262(2):361.
doi: 10.1016/s0012-1606(03)00126-x
pubmed: 12798299
Hayashi S, Tanaka J, Okada S, Isobe T, Yamamoto G, Yasuhara R, Irie T, Akiyama C, Kohno Y, Tachikawa T, Mishima K. Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma. Exp Cell Res. 2013;319(8):1220–8. https://doi.org/10.1016/j.yexcr.2013.03.004 .
doi: 10.1016/j.yexcr.2013.03.004
pubmed: 23500413
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20. https://doi.org/10.1126/science.1151526 .
doi: 10.1126/science.1151526
pubmed: 18029452
Balzer E, Moss EG. Localization of the developmental timing regulator Lin28 to mRNP complexes, P-bodies and stress granules. RNA Biol. 2007;4(1):16–25. https://doi.org/10.4161/rna.4.1.4364 .
doi: 10.4161/rna.4.1.4364
pubmed: 17617744
Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, Iliopoulos D, Gregory RI. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell. 2011;147(5):1066–79. https://doi.org/10.1016/j.cell.2011.10.039 .
doi: 10.1016/j.cell.2011.10.039
pubmed: 22118463
pmcid: 3227872
Viswanathan SR, Daley GQ, Gregory RI. Selective blockade of microRNA processing by Lin28. Science. 2008;320(5872):97–100. https://doi.org/10.1126/science.1154040 . Epub 2008 Feb 21.
doi: 10.1126/science.1154040
pubmed: 18292307
pmcid: 3368499
Shyh-Chang N, Daley GQ. Lin28: primal regulator of growth and metabolism in stem cells. Cell Stem Cell. 2013;12(4):395–406. https://doi.org/10.1016/j.stem.2013.03.005 .
doi: 10.1016/j.stem.2013.03.005
pubmed: 23561442
pmcid: 3652335
Md Hashim NF, Nicholas NS, Dart AE, Kiriakidis S, Paleolog E, Wells CM. Hypoxia-induced invadopodia formation: a role for β-PIX. Open Biol. 2013;3(6):120159. https://doi.org/10.1098/rsob.120159 .
doi: 10.1098/rsob.120159
pubmed: 23740575
pmcid: 3718326
Díaz B, Yuen A, Iizuka S, Higashiyama S, Courtneidge SA. Notch increases the shedding of HB-EGF by ADAM12 to potentiate invadopodia formation in hypoxia. J Cell Biol. 2013;201(2):279–92. https://doi.org/10.1083/jcb.201209151 .
doi: 10.1083/jcb.201209151
pubmed: 23589494
pmcid: 3628517
de Mendonça RP, Balbinot KM, Martins BV, da Silva Kataoka MS, Mesquita RA, de Jesus Viana Pinheiro J, de Melo Alves Júnior S. Hypoxia and proangiogenic proteins in human ameloblastoma. Sci Rep. 2020;10(1):17567. https://doi.org/10.1038/s41598-020-74693-7 .
doi: 10.1038/s41598-020-74693-7
pubmed: 33067558
pmcid: 7568536
da Costa NM, Fialho AD, Proietti CC, da Silva Kataoka MS, Jaeger RG, de Alves-Júnior SM, de Jesus Viana Pinheiro J. Role of hypoxia-related proteins in invasion of ameloblastoma cells: crosstalk between NOTCH1, hypoxia-inducible factor 1α, a disintegrin and metalloproteinase 12, and heparin-binding epidermal growth factor. Histopathology. 2016;69(1):99–106. https://doi.org/10.1111/his.12922 .
doi: 10.1111/his.12922
pubmed: 26707922
da Costa NMM, de Siqueira AS, Ribeiro ALR, da Silva Kataoka MS, Jaeger RG, de Alves-Júnior SM, Smith AM, de Jesus Viana Pinheiro J. Role of HIF-1α and CASPASE-3 in cystogenesis of odontogenic cysts and tumors. Clin Oral Investig. 2018;22(1):141–9. https://doi.org/10.1007/s00784-017-2090-6 .
doi: 10.1007/s00784-017-2090-6
pubmed: 28238093
Weng M, Feng Y, He Y, Yang W, Li J, Zhu Y, Wang T, Wang C, Zhang X, Qiao Y, Li Q, Zhao L, Gao S, Zhang L, Wu Y, Zhao R, Wang G, Li Z, Jin X, Zheng T, Li X. Hypoxia-induced LIN28A mRNA promotes the metastasis of colon cancer in a protein-coding-independent manner. Front Cell Dev Biol. 2021;9:642930. https://doi.org/10.3389/fcell.2021.642930 .
doi: 10.3389/fcell.2021.642930
pubmed: 33665193
pmcid: 7921329
Wang P, Wan WW, Xiong SL, Feng H, Wu N. Cancer stem-like cells can be induced through dedifferentiation under hypoxic conditions in glioma, hepatoma and lung cancer. Cell Death Discov. 2017;3:16105. https://doi.org/10.1038/cddiscovery.2016.105 .
doi: 10.1038/cddiscovery.2016.105
pubmed: 28179999
pmcid: 5253691
Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, Hubaud A, Stadler B, Choi M, Bar M, Tewari M, Liu A, Vessella R, Rostomily R, Born D, Horwitz M, Ware C, Blau CA, Cleary MA, Rich JN, Ruohola-Baker H. HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 2011;71(13):4640–52. https://doi.org/10.1158/0008-5472.CAN-10-3320 .
doi: 10.1158/0008-5472.CAN-10-3320
pubmed: 21712410
pmcid: 3129496
Xie H, Dubey N, Shim W, Ramachandra CJA, Min KS, Cao T, Rosa V. Functional odontoblastic-like cells derived from human iPSCs. J Dent Res. 2018;97(1):77–83. https://doi.org/10.1177/0022034517730026 .
doi: 10.1177/0022034517730026
pubmed: 28898112
Weltner J, Balboa D, Katayama S, Bespalov M, Krjutškov K, Jouhilahti EM, Trokovic R, Kere J, Otonkoski T. Human pluripotent reprogramming with CRISPR activators. Nat Commun. 2018;9(1):2643. https://doi.org/10.1038/s41467-018-05067-x .
doi: 10.1038/s41467-018-05067-x
pubmed: 29980666
pmcid: 6035213
Tai SK, Yang MH, Chang SY, Chang YC, Li WY, Tsai TL, Wang YF, Chu PY, Hsieh SL. Persistent Krüppel-like factor 4 expression predicts progression and poor prognosis of head and neck squamous cell carcinoma. Cancer Sci. 2011;102(4):895–902. https://doi.org/10.1111/j.1349-7006.2011.01859.x .
doi: 10.1111/j.1349-7006.2011.01859.x
pubmed: 21219537
Yoshihama R, Yamaguchi K, Imajyo I, Mine M, Hiyake N, Akimoto N, Kobayashi Y, Chigita S, Kumamaru W, Kiyoshima T, Mori Y, Sugiura T. Expression levels of SOX2, KLF4 and brachyury transcription factors are associated with metastasis and poor prognosis in oral squamous cell carcinoma. Oncol Lett. 2016;11(2):1435–46. https://doi.org/10.3892/ol.2015.4047 .
doi: 10.3892/ol.2015.4047
pubmed: 26893757
Søland TM, Solhaug MB, Bjerkli IH, Schreurs O, Sapkota D. The prognostic role of combining Krüppel-like factor 4 score and grade of inflammation in a Norwegian cohort of oral tongue squamous cell carcinomas. Eur J Oral Sci. 2022;130(3):e12866. https://doi.org/10.1111/eos.12866 .
doi: 10.1111/eos.12866
pubmed: 35363406
pmcid: 9321830
Li W, Liu M, Su Y, Zhou X, Liu Y, Zhang X. The Janus-faced roles of Krüppel-like factor 4 in oral squamous cell carcinoma cells. Oncotarget. 2015;6(42):44480–94. https://doi.org/10.18632/oncotarget.6256 .
doi: 10.18632/oncotarget.6256
pubmed: 26517087
pmcid: 4792570
Rowland BD, Peeper DS. KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer. 2006;6(1):11–23. https://doi.org/10.1038/nrc1780 .
doi: 10.1038/nrc1780
pubmed: 16372018
Le Magnen C, Bubendorf L, Ruiz C, Zlobec I, Bachmann A, Heberer M, Spagnoli GC, Wyler S, Mengus C. Klf4 transcription factor is expressed in the cytoplasm of prostate cancer cells. Eur J Cancer. 2013;49(4):955–63. https://doi.org/10.1016/j.ejca.2012.09.023 .
doi: 10.1016/j.ejca.2012.09.023
pubmed: 23089465
Pandya AY, Talley LI, Frost AR, Fitzgerald TJ, Trivedi V, Chakravarthy M, Chhieng DC, Grizzle WE, Engler JA, Krontiras H, Bland KI, LoBuglio AF, Lobo-Ruppert SM, Ruppert JM. Nuclear localization of KLF4 is associated with an aggressive phenotype in early-stage breast cancer. Clin Cancer Res. 2004;10(8):2709–19. https://doi.org/10.1158/1078-0432.ccr-03-0484 .
doi: 10.1158/1078-0432.ccr-03-0484
pubmed: 15102675
Shibata M, Chiba T, Matsuoka T, Mihara N, Kawashiri S, Imai K. Krüppel-like factors 4 and 5 expression and their involvement in differentiation of oral carcinomas. Int J Clin Exp Pathol. 2015;8(4):3701–9.
pubmed: 26097551
pmcid: 4466938