Extraordinary Claims in the Literature on High-Intensity Interval Training (HIIT): I. Bonafide Scientific Revolution or a Looming Crisis of Replication and Credibility?
Journal
Sports medicine (Auckland, N.Z.)
ISSN: 1179-2035
Titre abrégé: Sports Med
Pays: New Zealand
ID NLM: 8412297
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
accepted:
15
06
2023
medline:
18
9
2023
pubmed:
10
8
2023
entrez:
10
8
2023
Statut:
ppublish
Résumé
The literature on high-intensity interval training (HIIT) contains claims that, if true, could revolutionize the science and practice of exercise. This critical analysis examines two varieties of claims: (i) HIIT is effective in improving various indices of fitness and health, and (ii) HIIT is as effective as more time-consuming moderate-intensity continuous exercise. Using data from two recent systematic reviews as working examples, we show that studies in both categories exhibit considerable weaknesses when judged through the prism of fundamental statistical principles. Predominantly, small-to-medium effects are investigated in severely underpowered studies, thus greatly increasing the risk of both type I and type II errors of statistical inference. Studies in the first category combine the volatility of estimates associated with small samples with numerous dependent variables analyzed without consideration of the inflation of the type I error rate. Studies in the second category inappropriately use the p > 0.05 criterion from small studies to support claims of 'similar' or 'comparable' effects. It is concluded that the situation in the HIIT literature is reminiscent of the research climate that led to the replication crisis in psychology. As in psychology, this could be an opportunity to reform statistical practices in exercise science.
Identifiants
pubmed: 37561389
doi: 10.1007/s40279-023-01880-7
pii: 10.1007/s40279-023-01880-7
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1865-1890Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Haskell WL. Health consequences of physical activity: understanding and challenges regarding dose-response. Med Sci Sports Exerc. 1994;26(6):649–60. https://doi.org/10.1249/00005768-199406000-00001 .
doi: 10.1249/00005768-199406000-00001
pubmed: 8052103
Pate RR. Physical activity and health: dose-response issues. Res Q Exerc Sport. 1995;66(4):313–7. https://doi.org/10.1080/02701367.1995.10607917 .
doi: 10.1080/02701367.1995.10607917
pubmed: 8775587
Pate RR, Pratt M, Blair SN, Haskell WL, Macera CA, Bouchard C, Buchner D, Ettinger W, Heath GW, King AC, et al. Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA. 1995;273(5):402–7. https://doi.org/10.1001/jama.273.5.402 .
doi: 10.1001/jama.273.5.402
pubmed: 7823386
US Department of Health and Human Services. Physical activity and health: a report of the Surgeon General. Atlanta, Georgia: US Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion; 1996.
Leon AS. Physical activity and cardiovascular health: a national consensus. Champaign: Human Kinetics; 1997.
NIH Consensus Development Panel on Physical Activity and Cardiovascular Health. Physical activity and cardiovascular health. JAMA. 1996;276(3):241–246. https://doi.org/10.1001/jama.1996.03540030075036
Blair SN, LaMonte MJ, Nichaman MZ. The evolution of physical activity recommendations: how much is enough? Am J Clin Nutr. 2004;79(5):913S-920S. https://doi.org/10.1093/ajcn/79.5.913S .
doi: 10.1093/ajcn/79.5.913S
pubmed: 15113739
Dishman RK, Buckworth J. Increasing physical activity: a quantitative synthesis. Med Sci Sports Exerc. 1996;28(6):706–19. https://doi.org/10.1097/00005768-199606000-00010 .
doi: 10.1097/00005768-199606000-00010
pubmed: 8784759
Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8. https://doi.org/10.1249/mss.0b013e31815a51b3 .
doi: 10.1249/mss.0b013e31815a51b3
pubmed: 18091006
Metzger JS, Catellier DJ, Evenson KR, Treuth MS, Rosamond WD, Siega-Riz AM. Patterns of objectively measured physical activity in the United States. Med Sci Sports Exerc. 2008;40(4):630–8. https://doi.org/10.1249/MSS.0b013e3181620ebc .
doi: 10.1249/MSS.0b013e3181620ebc
pubmed: 18317384
Tudor-Locke C, Brashear MM, Johnson WD, Katzmarzyk PT. Accelerometer profiles of physical activity and inactivity in normal weight, overweight, and obese U.S. men and women. Int J Behav Nutr Phys Act. 2010;7:60. https://doi.org/10.1186/1479-5868-7-60 .
doi: 10.1186/1479-5868-7-60
pubmed: 20682057
Winett RA. Developing more effective health-behavior programs: analyzing the epidemiological and biological bases for activity and exercise programs. Appl Prev Psychol. 1998;7(4):209–24. https://doi.org/10.1016/S0962-1849(98)80025-5 .
doi: 10.1016/S0962-1849(98)80025-5
Swain DP, Franklin BA. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol. 2006;97(1):141–7. https://doi.org/10.1016/j.amjcard.2005.07.130 .
doi: 10.1016/j.amjcard.2005.07.130
pubmed: 16377300
O’Donovan G, Shave R. British adults’ views on the health benefits of moderate and vigorous activity. Prev Med. 2007;45(6):432–5. https://doi.org/10.1016/j.ypmed.2007.07.026 .
doi: 10.1016/j.ypmed.2007.07.026
pubmed: 17804045
Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, Macera CA, Heath GW, Thompson PD, Bauman A, American College of Sports Medicine; American Heart Association. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116(9):1081–93. https://doi.org/10.1161/CIRCULATIONAHA.107.185649 .
doi: 10.1161/CIRCULATIONAHA.107.185649
pubmed: 17671237
O’Donovan G, Blazevich AJ, Boreham C, Cooper AR, Crank H, Ekelund U, Fox KR, Gately P, Giles-Corti B, Gill JM, Hamer M, McDermott I, Murphy M, Mutrie N, Reilly JJ, Saxton JM, Stamatakis E. The ABC of Physical Activity for Health: a consensus statement from the British Association of Sport and Exercise Sciences. J Sports Sci. 2010;28(6):573–91. https://doi.org/10.1080/02640411003671212 .
doi: 10.1080/02640411003671212
pubmed: 20401789
Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol. 2005;98(6):1985–90. https://doi.org/10.1152/japplphysiol.01095.2004 .
doi: 10.1152/japplphysiol.01095.2004
pubmed: 15705728
Coyle EF. Very intense exercise-training is extremely potent and time efficient: a reminder. J Appl Physiol. 2005;98(6):1983–4. https://doi.org/10.1152/japplphysiol.00215.2005 .
doi: 10.1152/japplphysiol.00215.2005
pubmed: 15894535
Thompson WR. Worldwide survey of fitness trends for 2014. ACSM Health Fitness J. 2013;17(6):10–20.
doi: 10.1249/FIT.0b013e3182a955e6
Gray SR, Ferguson C, Birch K, Forrest LJ, Gill JM. High-intensity interval training: key data needed to bridge the gap from laboratory to public health policy. Br J Sports Med. 2016;50(20):1231–2. https://doi.org/10.1136/bjsports-2015-095705 .
doi: 10.1136/bjsports-2015-095705
pubmed: 26994125
Steen RG. Misinformation in the medical literature: what role do error and fraud play? J Med Ethics. 2011;37(8):498–503. https://doi.org/10.1136/jme.2010.041830 .
doi: 10.1136/jme.2010.041830
pubmed: 21343631
Viana RB, Naves JPA, Coswig VS, de Lira CAB, Steele J, Fisher JP, Gentil P. Is interval training the magic bullet for fat loss? A systematic review and meta-analysis comparing moderate-intensity continuous training with high-intensity interval training (HIIT). Br J Sports Med. 2019;53(10):655–64. https://doi.org/10.1136/bjsports-2018-099928 .
doi: 10.1136/bjsports-2018-099928
pubmed: 30765340
Sainani KL, Borg DN, Caldwell AR, Butson ML, Tenan MS, Vickers AJ, Vigotsky AD, Warmenhoven J, Nguyen R, Lohse KR, Knight EJ, Bargary N. Call to increase statistical collaboration in sports science, sport and exercise medicine and sports physiotherapy. Br J Sports Med. 2021;55(2):118–22. https://doi.org/10.1136/bjsports-2020-102607 .
doi: 10.1136/bjsports-2020-102607
pubmed: 32816788
Nickerson RS. Null hypothesis significance testing: a review of an old and continuing controversy. Psychol Methods. 2000;5(2):241–301. https://doi.org/10.1037/1082-989x.5.2.241 .
doi: 10.1037/1082-989x.5.2.241
pubmed: 10937333
Sterne JA, Davey SG. Sifting the evidence: what’s wrong with significance tests? BMJ. 2001;322(7280):226–31. https://doi.org/10.1136/bmj.322.7280.226 .
doi: 10.1136/bmj.322.7280.226
pubmed: 11159626
Christensen R. Testing Fisher, Neyman, Pearson, and Bayes. Am Stat. 2005;59(2):121–6. https://doi.org/10.1198/000313005X20871 .
doi: 10.1198/000313005X20871
Lakens D. The practical alternative to the p value is the correctly used p value. Perspect Psychol Sci. 2021;16(3):639–48. https://doi.org/10.1177/1745691620958012 .
doi: 10.1177/1745691620958012
pubmed: 33560174
Hubbard R, Bayarri MJ. Confusion over measures of evidence (p’s) versus errors (α’s) in classical statistical testing. Am Stat. 2003;57(3):171–8. https://doi.org/10.1198/0003130031856 .
doi: 10.1198/0003130031856
Fisher RA. Statistical methods for research workers. 5th ed. Edinburgh: Oliver and Boyd; 1934.
Neyman J, Pearson ESIX. On the problem of the most efficient tests of statistical hypotheses. Philos Trans R Soc Lond A. 1933;231:289–337. https://doi.org/10.1098/rsta.1933.0009 .
doi: 10.1098/rsta.1933.0009
Szucs D, Ioannidis JPA. When null hypothesis significance testing is unsuitable for research: a reassessment. Front Hum Neurosci. 2017;11:390. https://doi.org/10.3389/fnhum.2017.00390 .
doi: 10.3389/fnhum.2017.00390
pubmed: 28824397
Neyman J, Pearson ES. The testing of statistical hypotheses in relation to probabilities a priori. Math Proc Camb Philos Soc. 1933;29(4):492–510. https://doi.org/10.1017/S030500410001152X .
doi: 10.1017/S030500410001152X
Fisher RA. The design of experiments. Edinburgh: Oliver and Boyd; 1935.
Fisher R. Statistical methods and scientific induction. J R Stat Soc Ser B Methodol. 1955;17:69–78. https://doi.org/10.1111/j.2517-6161.1955.tb00180.x .
doi: 10.1111/j.2517-6161.1955.tb00180.x
Lehmann EL. The Fisher, Neyman-Pearson theories of testing hypotheses: one theory or two? J Am Stat Assoc. 1993;88(424):1242–9. https://doi.org/10.1080/01621459.1993.10476404 .
doi: 10.1080/01621459.1993.10476404
Lehmann EL. Fisher, Neyman, and the creation of classical statistics. New York: Springer; 2011. https://doi.org/10.1007/978-1-4419-9500-1 .
doi: 10.1007/978-1-4419-9500-1
Goodman S. A dirty dozen: twelve p-value misconceptions. Semin Hematol. 2008;45(3):135–40. https://doi.org/10.1053/j.seminhematol.2008.04.003 .
doi: 10.1053/j.seminhematol.2008.04.003
pubmed: 18582619
Greenland S, Senn SJ, Rothman KJ, et al. Statistical tests, p values, confidence intervals, and power: a guide to misinterpretations. Eur J Epidemiol. 2016;31(4):337–50. https://doi.org/10.1007/s10654-016-0149-3 .
doi: 10.1007/s10654-016-0149-3
pubmed: 27209009
Goodman SN. Toward evidence-based medical statistics. 1: the p value fallacy. Ann Intern Med. 1999;130(12):995–1004. https://doi.org/10.7326/0003-4819-130-12-199906150-00008 .
doi: 10.7326/0003-4819-130-12-199906150-00008
pubmed: 10383371
Berger JO, Sellke T. Testing a point null hypothesis: the irreconcilability of p values and evidence. J Am Stat Assoc. 1987;82(397):112–22. https://doi.org/10.1080/01621459.1987.10478397 .
doi: 10.1080/01621459.1987.10478397
Sellke T, Bayarri MJ, Berger JO. Calibration of p values for testing precise null hypotheses. Am Stat. 2001;55(1):62–71. https://doi.org/10.1198/000313001300339950 .
doi: 10.1198/000313001300339950
Berger JO. Could Fisher, Jeffreys and Neyman have agreed on testing? Stat Sci. 2003;18(1):1–32. https://doi.org/10.1214/ss/1056397485 .
doi: 10.1214/ss/1056397485
Goodman SN. A comment on replication, p-values and evidence. Stat Med. 1992;11(7):875–9. https://doi.org/10.1002/sim.4780110705 .
doi: 10.1002/sim.4780110705
pubmed: 1604067
Halsey LG, Curran-Everett D, Vowler SL, Drummond GB. The fickle p value generates irreproducible results. Nat Methods. 2015;12(3):179–85. https://doi.org/10.1038/nmeth.3288 .
doi: 10.1038/nmeth.3288
pubmed: 25719825
Lazzeroni LC, Lu Y, Belitskaya-Lévy I. Solutions for quantifying p-value uncertainty and replication power. Nat Methods. 2016;13(2):107–8. https://doi.org/10.1038/nmeth.3741 .
doi: 10.1038/nmeth.3741
pubmed: 26820540
Cumming G. Replication and p intervals: p values predict the future only vaguely, but confidence intervals do much better. Perspect Psychol Sci. 2008;3(4):286–300. https://doi.org/10.1111/j.1745-6924.2008.00079.x .
doi: 10.1111/j.1745-6924.2008.00079.x
pubmed: 26158948
Killeen PR. An alternative to null-hypothesis significance tests. Psychol Sci. 2005;16(5):345–53. https://doi.org/10.1111/j.0956-7976.2005.01538.x .
doi: 10.1111/j.0956-7976.2005.01538.x
pubmed: 15869691
Lecoutre B, Lecoutre MP, Poitevineau J. Killeen’s probability of replication and predictive probabilities: how to compute, use, and interpret them. Psychol Methods. 2010;15(2):158–71. https://doi.org/10.1037/a0015915 .
doi: 10.1037/a0015915
pubmed: 20515237
Sanabria F, Killeen PR. Better statistics for better decisions: rejecting null hypotheses statistical tests in favor of replication statistics. Psychol Sch. 2007;44(5):471–81. https://doi.org/10.1002/pits.20239 .
doi: 10.1002/pits.20239
pubmed: 19122766
Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. Nature. 2019;567(7748):305–7. https://doi.org/10.1038/d41586-019-00857-9 .
doi: 10.1038/d41586-019-00857-9
pubmed: 30894741
Hoekstra R, Finch S, Kiers HA, Johnson A. Probability as certainty: dichotomous thinking and the misuse of p values. Psychon Bull Rev. 2006;13(6):1033–7. https://doi.org/10.3758/bf03213921 .
doi: 10.3758/bf03213921
pubmed: 17484431
Smith RJ. P > 0.05: The incorrect interpretation of “not significant” results is a significant problem. Am J Phys Anthropol. 2020;172(4):521–7. https://doi.org/10.1002/ajpa.24092 .
doi: 10.1002/ajpa.24092
pubmed: 32570289
Alderson P. Absence of evidence is not evidence of absence. BMJ. 2004;328(7438):476–7. https://doi.org/10.1136/bmj.328.7438.476 .
doi: 10.1136/bmj.328.7438.476
pubmed: 14988165
Altman DG, Bland JM. Absence of evidence is not evidence of absence. BMJ. 1995;311(7003):485. https://doi.org/10.1136/bmj.311.7003.485 .
doi: 10.1136/bmj.311.7003.485
pubmed: 7647644
Speed HD, Andersen MB. What exercise and sport scientists don’t understand. J Sci Med Sport. 2000;3(1):84–92. https://doi.org/10.1016/s1440-2440(00)80051-1 .
doi: 10.1016/s1440-2440(00)80051-1
pubmed: 10839232
Vadillo MA, Konstantinidis E, Shanks DR. Underpowered samples, false negatives, and unconscious learning. Psychon Bull Rev. 2016;23(1):87–102. https://doi.org/10.3758/s13423-015-0892-6 .
doi: 10.3758/s13423-015-0892-6
pubmed: 26122896
Nosek BA, Spies JR, Motyl M. Scientific utopia: II. Restructuring incentives and practices to promote truth over publishability. Perspect Psychol Sci. 2012;7(6):615–31. https://doi.org/10.1177/1745691612459058 .
doi: 10.1177/1745691612459058
pubmed: 26168121
Anderson SF. Misinterpreting p: the discrepancy between p values and the probability the null hypothesis is true, the influence of multiple testing, and implications for the replication crisis. Psychol Methods. 2020;25(5):596–609. https://doi.org/10.1037/met0000248 .
doi: 10.1037/met0000248
pubmed: 31829657
Colling LJ, Szucs D. Statistical inference and the replication crisis. Rev Phil Psychol. 2021;12(1):121–47. https://doi.org/10.1007/s13164-018-0421-4 .
doi: 10.1007/s13164-018-0421-4
Colquhoun D. The reproducibility of research and the misinterpretation of p-values. R Soc Open Sci. 2017;4(12): 171085. https://doi.org/10.1098/rsos.171085 .
doi: 10.1098/rsos.171085
pubmed: 29308247
Gigerenzer G. Statistical rituals: the replication delusion and how we got there. Adv Methods Pract Psychol Sci. 2018;1(2):198–218. https://doi.org/10.1177/2515245918771329 .
doi: 10.1177/2515245918771329
Serra-Garcia M, Gneezy U. Nonreplicable publications are cited more than replicable ones. Sci Adv. 2021;7(21): eabd1705. https://doi.org/10.1126/sciadv.abd1705 .
doi: 10.1126/sciadv.abd1705
pubmed: 34020944
Caldwell AR, Vigotsky AD, Tenan MS, Radel R, Mellor DT, Kreutzer A, Lahart IM, Mills JP, Boisgontier MP, Consortium for Transparency in Exercise Science (COTES) Collaborators. Moving sport and exercise science forward: a call for the adoption of more transparent research practices. Sports Med. 2020;50(3):449–59. https://doi.org/10.1007/s40279-019-01227-1 .
doi: 10.1007/s40279-019-01227-1
pubmed: 32020542
Bauer N, Sperlich B, Holmberg HC, Engel FA. Effects of high-intensity interval training in school on the physical performance and health of children and adolescents: a systematic review with meta-analysis. Sports Med Open. 2022;8(1):50. https://doi.org/10.1186/s40798-022-00437-8 .
doi: 10.1186/s40798-022-00437-8
pubmed: 35403996
MattioniMaturana F, Martus P, Zipfel S, Nieß AM. Effectiveness of HIIE versus MICT in improving cardiometabolic risk factors in health and disease: a meta-analysis. Med Sci Sports Exerc. 2021;53(3):559–73. https://doi.org/10.1249/MSS.0000000000002506 .
doi: 10.1249/MSS.0000000000002506
Wisløff U, Støylen A, Loennechen JP, Bruvold M, Rognmo Ø, Haram PM, Tjønna AE, Helgerud J, Slørdahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen Ø, Skjaerpe T. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–94. https://doi.org/10.1161/CIRCULATIONAHA.106.675041 .
doi: 10.1161/CIRCULATIONAHA.106.675041
pubmed: 17548726
Andreacci JL, LeMura LM, Cohen SL, Urbansky EA, Chelland SA, Von Duvillard SP. The effects of frequency of encouragement on performance during maximal exercise testing. J Sports Sci. 2002;20(4):345–52. https://doi.org/10.1080/026404102753576125 .
doi: 10.1080/026404102753576125
pubmed: 12003280
Halperin I, Pyne DB, Martin DT. Threats to internal validity in exercise science: a review of overlooked confounding variables. Int J Sports Physiol Perform. 2015;10(7):823–9. https://doi.org/10.1123/ijspp.2014-0566 .
doi: 10.1123/ijspp.2014-0566
pubmed: 25756869
Midgley AW, Marchant DC, Levy AR. A call to action towards an evidence-based approach to using verbal encouragement during maximal exercise testing. Clin Physiol Funct Imaging. 2018;38(4):547–53. https://doi.org/10.1111/cpf.12454 .
doi: 10.1111/cpf.12454
pubmed: 28737294
Wisløff U, Coombes JS, Rognmo Ø. CrossTalk proposal: high intensity interval training does have a role in risk reduction or treatment of disease. J Physiol. 2015;593(24):5215–7. https://doi.org/10.1113/JP271041 .
doi: 10.1113/JP271041
pubmed: 26642190
Khalafi M, Symonds ME. The impact of high-intensity interval training on inflammatory markers in metabolic disorders: a meta-analysis. Scand J Med Sci Sports. 2020;30(11):2020–36. https://doi.org/10.1111/sms.13754 .
doi: 10.1111/sms.13754
pubmed: 32585734
Solera-Martínez M, Herraiz-Adillo Á, Manzanares-Domínguez I, De La Cruz LL, Martínez-Vizcaíno V, Pozuelo-Carrascosa DP. High-intensity interval training and cardiometabolic risk factors in children: a meta-analysis. Pediatrics. 2021;148(4): e2021050810. https://doi.org/10.1542/peds.2021-050810 .
doi: 10.1542/peds.2021-050810
pubmed: 34497117
Gerosa-Neto J, Antunes BM, Campos EZ, et al. Impact of long-term high-intensity interval and moderate-intensity continuous training on subclinical inflammation in overweight/obese adults. J Exerc Rehabil. 2016;12(6):575–80. https://doi.org/10.12965/jer.1632770.385 .
doi: 10.12965/jer.1632770.385
pubmed: 28119880
Oh S, So R, Shida T, et al. High-intensity aerobic exercise improves both hepatic fat content and stiffness in sedentary obese men with nonalcoholic fatty liver disease. Sci Rep. 2017;7:43029. https://doi.org/10.1038/srep43029 .
doi: 10.1038/srep43029
pubmed: 28223710
Paahoo A, Tadibi V, Behpoor N. Effectiveness of continuous aerobic versus high-intensity interval training on atherosclerotic and inflammatory markers in boys with overweight/obesity. Pediatr Exerc Sci. 2021;33(3):132–8. https://doi.org/10.1123/pes.2020-0138 .
doi: 10.1123/pes.2020-0138
pubmed: 33761458
Gandevia S. Publications, replication and statistics in physiology plus two neglected curves. J Physiol. 2021;599(6):1719–21. https://doi.org/10.1113/JP281360 .
doi: 10.1113/JP281360
pubmed: 33507571
Sainani K, Chamari K. Wish list for improving the quality of statistics in sport science. Int J Sports Physiol Perform. 2022;17(5):673–4. https://doi.org/10.1123/ijspp.2022-0023 .
doi: 10.1123/ijspp.2022-0023
pubmed: 35276666
Rubin M. When to adjust alpha during multiple testing: a consideration of disjunction, conjunction, and individual testing. Synthese. 2021;199(3–4):10969–1000. https://doi.org/10.1007/s11229-021-03276-4 .
doi: 10.1007/s11229-021-03276-4
Albers C. The problem with unadjusted multiple and sequential statistical testing. Nat Commun. 2019;10(1):1921. https://doi.org/10.1038/s41467-019-09941-0 .
doi: 10.1038/s41467-019-09941-0
pubmed: 31015469
Forstmeier W, Wagenmakers EJ, Parker TH. Detecting and avoiding likely false-positive findings: a practical guide. Biol Rev Camb Philos Soc. 2017;92(4):1941–68. https://doi.org/10.1111/brv.12315 .
doi: 10.1111/brv.12315
pubmed: 27879038
Streiner DL. Best (but oft-forgotten) practices: the multiple problems of multiplicity - whether and how to correct for many statistical tests. Am J Clin Nutr. 2015;102(4):721–8. https://doi.org/10.3945/ajcn.115.113548 .
doi: 10.3945/ajcn.115.113548
pubmed: 26245806
Maxwell SE, Delaney HD, Kelley K. Designing experiments and analyzing data: a model comparison perspective. 3rd ed. Oxfordshire: Routledge; 2018.
Blakesley RE, Mazumdar S, Dew MA, Houck PR, Tang G, Reynolds CF 3rd, Butters MA. Comparisons of methods for multiple hypothesis testing in neuropsychological research. Neuropsychology. 2009;23(2):255–64. https://doi.org/10.1037/a0012850 .
doi: 10.1037/a0012850
pubmed: 19254098
Sankoh AJ, Huque MF, Dubey SD. Some comments on frequently used multiple endpoint adjustment methods in clinical trials. Stat Med. 1997;16(22):2529–42. https://doi.org/10.1002/(sici)1097-0258(19971130)16:22%3c2529::aid-sim692%3e3.0.co;2-j .
doi: 10.1002/(sici)1097-0258(19971130)16:22<2529::aid-sim692>3.0.co;2-j
pubmed: 9403954
Vickerstaff V, Omar RZ, Ambler G. Methods to adjust for multiple comparisons in the analysis and sample size calculation of randomised controlled trials with multiple primary outcomes. BMC Med Res Methodol. 2019;19(1):129. https://doi.org/10.1186/s12874-019-0754-4 .
doi: 10.1186/s12874-019-0754-4
pubmed: 31226934
Sankoh AJ, D’Agostino RB Sr, Huque MF. Efficacy endpoint selection and multiplicity adjustment methods in clinical trials with inherent multiple endpoint issues. Stat Med. 2003;22(20):3133–50. https://doi.org/10.1002/sim.1557 .
doi: 10.1002/sim.1557
pubmed: 14518019
Cheverud JM. A simple correction for multiple comparisons in interval mapping genome scans. Heredity. 2001;87(Pt 1):52–8. https://doi.org/10.1046/j.1365-2540.2001.00901.x .
doi: 10.1046/j.1365-2540.2001.00901.x
pubmed: 11678987
Nyholt DR. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet. 2004;74(4):765–9. https://doi.org/10.1086/383251 .
doi: 10.1086/383251
pubmed: 14997420
Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008;586(1):151–60. https://doi.org/10.1113/jphysiol.2007.142109 .
doi: 10.1113/jphysiol.2007.142109
pubmed: 17991697
Gillen JB, Martin BJ, MacInnis MJ, Skelly LE, Tarnopolsky MA, Gibala MJ. Twelve weeks of sprint interval training improves indices of cardiometabolic health similar to traditional endurance training despite a five-fold lower exercise volume and time commitment. PLoS One. 2016;11(4): e0154075. https://doi.org/10.1371/journal.pone.0154075 .
doi: 10.1371/journal.pone.0154075
pubmed: 27115137
Robinson E, Durrer C, Simtchouk S, Jung ME, Bourne JE, Voth E, Little JP. Short-term high-intensity interval and moderate-intensity continuous training reduce leukocyte TLR4 in inactive adults at elevated risk of type 2 diabetes. J Appl Physiol. 2015;119(5):508–16. https://doi.org/10.1152/japplphysiol.00334.2015 .
doi: 10.1152/japplphysiol.00334.2015
pubmed: 26139217
Cocks M, Shaw CS, Shepherd SO, Fisher JP, Ranasinghe A, Barker TA, Wagenmakers AJ. Sprint interval and moderate-intensity continuous training have equal benefits on aerobic capacity, insulin sensitivity, muscle capillarisation and endothelial eNOS/NAD(P)Hoxidase protein ratio in obese men. J Physiol. 2016;594(8):2307–21. https://doi.org/10.1113/jphysiol.2014.285254 .
doi: 10.1113/jphysiol.2014.285254
pubmed: 25645978
McGiffin DC, Cumming G, Myles PS. The frequent insignificance of a “significant” p-value. J Card Surg. 2021;36(11):4322–31. https://doi.org/10.1111/jocs.15960 .
doi: 10.1111/jocs.15960
pubmed: 34477260
Locke SR, Bourne JE, Beauchamp MR, Little JP, Barry J, Singer J, Jung ME. High-intensity interval or continuous moderate exercise: a 24-week pilot trial. Med Sci Sports Exerc. 2018;50(10):2067–75. https://doi.org/10.1249/MSS.0000000000001668 .
doi: 10.1249/MSS.0000000000001668
pubmed: 29762252
Albers C, Lakens D. When power analyses based on pilot data are biased: inaccurate effect size estimators and follow-up bias. J Exp Soc Psychol. 2018;74:187–95. https://doi.org/10.1016/j.jesp.2017.09.004 .
doi: 10.1016/j.jesp.2017.09.004
Kraemer HC, Mintz J, Noda A, Tinklenberg J, Yesavage JA. Caution regarding the use of pilot studies to guide power calculations for study proposals. Arch Gen Psychiatry. 2006;63(5):484–9. https://doi.org/10.1001/archpsyc.63.5.484 .
doi: 10.1001/archpsyc.63.5.484
pubmed: 16651505
van Zwet EW, Goodman SN. How large should the next study be? Predictive power and sample size requirements for replication studies. Stat Med. 2022;41(16):3090–101. https://doi.org/10.1002/sim.9406 .
doi: 10.1002/sim.9406
pubmed: 35396714
Curran-Everett D. Explorations in statistics: statistical facets of reproducibility. Adv Physiol Educ. 2016;40(2):248–52. https://doi.org/10.1152/advan.00042.2016 .
doi: 10.1152/advan.00042.2016
pubmed: 27231259
Gandevia S, Cumming G, Amrhein V, Butler A. Replication: do not trust your p-value, be it small or large. J Physiol. 2021;599(11):2989–90. https://doi.org/10.1113/JP281614 .
doi: 10.1113/JP281614
pubmed: 33963767
Gorroochurn P, Hodge SE, Heiman GA, Durner M, Greenberg DA. Non-replication of association studies: “pseudo-failures” to replicate? Genet Med. 2007;9(6):325–31. https://doi.org/10.1097/gim.0b013e3180676d79 .
doi: 10.1097/gim.0b013e3180676d79
pubmed: 17575498
Gibson EW. The role of p-values in judging the strength of evidence and realistic replication expectations. Stat Biopharm Res. 2021;13(1):6–18. https://doi.org/10.1080/19466315.2020.1724560 .
doi: 10.1080/19466315.2020.1724560
Boos DD, Stefanski LA. P-value precision and reproducibility. Am Stat. 2011;65(4):213–21. https://doi.org/10.1198/tas.2011.10129 .
doi: 10.1198/tas.2011.10129
pubmed: 22690019
Hung HM, O’Neill RT, Bauer P, Köhne K. The behavior of the P-value when the alternative hypothesis is true. Biometrics. 1997;53(1):11–22. https://doi.org/10.2307/2533093 .
doi: 10.2307/2533093
pubmed: 9147587
Sackrowitz H, Samuel-Cahn E. P values as random variables: expected p values. Am Stat. 1999;53(4):326–31. https://doi.org/10.1080/00031305.1999.10474484 .
doi: 10.1080/00031305.1999.10474484
Shao J, Chow SC. Reproducibility probability in clinical trials. Stat Med. 2002;21(12):1727–42. https://doi.org/10.1002/sim.1177 .
doi: 10.1002/sim.1177
pubmed: 12111908
Amrhein V, Korner-Nievergelt F, Roth T. The earth is flat (p > 0.05): significance thresholds and the crisis of unreplicable research. PeerJ. 2017;5: e3544. https://doi.org/10.7717/peerj.3544 .
doi: 10.7717/peerj.3544
pubmed: 28698825
Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafò MR. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14(5):365–76. https://doi.org/10.1038/nrn3475 .
doi: 10.1038/nrn3475
pubmed: 23571845
Ioannidis JP. Why most published research findings are false. PLoS Med. 2005;2(8): e124. https://doi.org/10.1371/journal.pmed.0020124 .
doi: 10.1371/journal.pmed.0020124
pubmed: 16060722
Dumas-Mallet E, Button KS, Boraud T, Gonon F, Munafò MR. Low statistical power in biomedical science: a review of three human research domains. R Soc Open Sci. 2017;4(2): 160254. https://doi.org/10.1098/rsos.160254 .
doi: 10.1098/rsos.160254
pubmed: 28386409
Ioannidis JP, Trikalinos TA. An exploratory test for an excess of significant findings. Clin Trials. 2007;4(3):245–53. https://doi.org/10.1177/1740774507079441 .
doi: 10.1177/1740774507079441
pubmed: 17715249
Masicampo EJ, Lalande DR. A peculiar prevalence of p values just below 0.05. Q J Exp Psychol. 2012;65(11):2271–9. https://doi.org/10.1080/17470218.2012.711335 .
doi: 10.1080/17470218.2012.711335
Simmons JP, Nelson LD, Simonsohn U. False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol Sci. 2011;22(11):1359–66. https://doi.org/10.1177/0956797611417632 .
doi: 10.1177/0956797611417632
pubmed: 22006061
Rosenthal R. The file drawer problem and tolerance for null results. Psychol Bull. 1979;86(3):638–41. https://doi.org/10.1037/0033-2909.86.3.638 .
doi: 10.1037/0033-2909.86.3.638
Ioannidis JP. Why most discovered true associations are inflated. Epidemiology. 2008;19(5):640–8. https://doi.org/10.1097/EDE.0b013e31818131e7 .
doi: 10.1097/EDE.0b013e31818131e7
pubmed: 18633328
Young NS, Ioannidis JP, Al-Ubaydli O. Why current publication practices may distort science. PLoS Med. 2008;5(10): e201. https://doi.org/10.1371/journal.pmed.0050201 .
doi: 10.1371/journal.pmed.0050201
pubmed: 18844432
Colquhoun D. An investigation of the false discovery rate and the misinterpretation of p-values. R Soc Open Sci. 2014;1(3): 140216. https://doi.org/10.1098/rsos.140216 .
doi: 10.1098/rsos.140216
pubmed: 26064558
Davis-Stober CP, Dana J. Comparing the accuracy of experimental estimates to guessing: a new perspective on replication and the “crisis of confidence” in psychology. Behav Res Methods. 2014;46(1):1–14. https://doi.org/10.3758/s13428-013-0342-1 .
doi: 10.3758/s13428-013-0342-1
pubmed: 23661222
Lakens D, Evers ER. Sailing from the seas of chaos into the corridor of stability: practical recommendations to increase the informational value of studies. Perspect Psychol Sci. 2014;9(3):278–92. https://doi.org/10.1177/1745691614528520 .
doi: 10.1177/1745691614528520
pubmed: 26173264
Lakens D. Equivalence tests: a practical primer for t tests, correlations, and meta-analyses. Soc Psychol Personal Sci. 2017;8(4):355–62. https://doi.org/10.1177/1948550617697177 .
doi: 10.1177/1948550617697177
pubmed: 28736600
Parkhurst DF. Statistical significance tests: equivalence and reverse tests should reduce misinterpretation. Bioscience. 2001;51(12):1051–7. https://doi.org/10.1641/0006-3568(2001)051[1051:SSTEAR]2.0.CO;2 .
doi: 10.1641/0006-3568(2001)051[1051:SSTEAR]2.0.CO;2
Mazzolari R, Porcelli S, Bishop DJ, Lakens D. Myths and methodologies: the use of equivalence and non-inferiority tests for interventional studies in exercise physiology and sport science. Exp Physiol. 2022;107(3):201–12. https://doi.org/10.1113/EP090171 .
doi: 10.1113/EP090171
pubmed: 35041233
McRae G, Payne A, Zelt JG, Scribbans TD, Jung ME, Little JP, Gurd BJ. Extremely low volume, whole-body aerobic-resistance training improves aerobic fitness and muscular endurance in females. Appl Physiol Nutr Metab. 2012;37(6):1124–31. https://doi.org/10.1139/h2012-093 .
doi: 10.1139/h2012-093
pubmed: 22994393
Rakobowchuk M, Tanguay S, Burgomaster KA, Howarth KR, Gibala MJ, MacDonald MJ. Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am J Physiol Regul Integr Comp Physiol. 2008;295(1):R236–42. https://doi.org/10.1152/ajpregu.00069.2008 .
doi: 10.1152/ajpregu.00069.2008
pubmed: 18434437
Iellamo F, Manzi V, Caminiti G, Vitale C, Castagna C, Massaro M, Franchini A, Rosano G, Volterrani M. Matched dose interval and continuous exercise training induce similar cardiorespiratory and metabolic adaptations in patients with heart failure. Int J Cardiol. 2013;167(6):2561–5. https://doi.org/10.1016/j.ijcard.2012.06.057 .
doi: 10.1016/j.ijcard.2012.06.057
pubmed: 22769574
Martins C, Kazakova I, Ludviksen M, Mehus I, Wisloff U, Kulseng B, Morgan L, King N. High-intensity interval training and isocaloric moderate-intensity continuous training result in similar improvements in body composition and fitness in obese individuals. Int J Sport Nutr Exerc Metab. 2016;26(3):197–204. https://doi.org/10.1123/ijsnem.2015-0078 .
doi: 10.1123/ijsnem.2015-0078
pubmed: 26479856
Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575(Pt 3):901–11. https://doi.org/10.1113/jphysiol.2006.112094 .
doi: 10.1113/jphysiol.2006.112094
pubmed: 16825308
Vella CA, Taylor K, Drummer D. High-intensity interval and moderate-intensity continuous training elicit similar enjoyment and adherence levels in overweight and obese adults. Eur J Sport Sci. 2017;17(9):1203–11. https://doi.org/10.1080/17461391.2017.1359679 .
doi: 10.1080/17461391.2017.1359679
pubmed: 28792851
Bartlett JD, Hwa Joo C, Jeong TS, Louhelainen J, Cochran AJ, Gibala MJ, Gregson W, Close GL, Drust B, Morton JP. Matched work high-intensity interval and continuous running induce similar increases in PGC-1a mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J Appl Physiol. 2012;112(7):1135–43. https://doi.org/10.1152/japplphysiol.01040.2011 .
doi: 10.1152/japplphysiol.01040.2011
pubmed: 22267390
Trewin AJ, Parker L, Shaw CS, Hiam DS, Garnham A, Levinger I, McConell GK, Stepto NK. Acute HIIE elicits similar changes in human skeletal muscle mitochondrial H2O2 release, respiration, and cell signaling as endurance exercise even with less work. Am J Physiol Regul Integr Comp Physiol. 2018;315(5):R1003–16. https://doi.org/10.1152/ajpregu.00096.2018 .
doi: 10.1152/ajpregu.00096.2018
pubmed: 30183338
Hazell TJ, Olver TD, Hamilton CD, Lemon PWR. Two minutes of sprint-interval exercise elicits 24-hr oxygen consumption similar to that of 30 min of continuous endurance exercise. Int J Sport Nutr Exerc Metab. 2012;22(4):276–83. https://doi.org/10.1123/ijsnem.22.4.276 .
doi: 10.1123/ijsnem.22.4.276
pubmed: 22710610
Skelly LE, Andrews PC, Gillen JB, Martin BJ, Percival ME, Gibala MJ. High-intensity interval exercise induces 24-h energy expenditure similar to traditional endurance exercise despite reduced time commitment. Appl Physiol Nutr Metab. 2014;39(7):845–8. https://doi.org/10.1139/apnm-2013-0562 .
doi: 10.1139/apnm-2013-0562
pubmed: 24773393
Saucedo Marquez CM, Vanaudenaerde B, Troosters T, Wenderoth N. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. J Appl Physiol. 2015;119(12):1363–73. https://doi.org/10.1152/japplphysiol.00126.2015 .
doi: 10.1152/japplphysiol.00126.2015
pubmed: 26472862
Sagelv EH, Hammer T, Hamsund T, Rognmo K, Pettersen SA, Pedersen S. High intensity long interval sets provides similar enjoyment as continuous moderate intensity exercise: the Tromsø Exercise Enjoyment Study. Front Psychol. 2019;10:1788. https://doi.org/10.3389/fpsyg.2019.01788 .
doi: 10.3389/fpsyg.2019.01788
pubmed: 31447732
Crisp NA, Fournier PA, Licari MK, Braham R, Guelfi KJ. Optimising sprint interval exercise to maximise energy expenditure and enjoyment in overweight boys. Appl Physiol Nutr Metab. 2012;37(6):1222–31. https://doi.org/10.1139/h2012-111 .
doi: 10.1139/h2012-111
pubmed: 23176528
Sabag A, Little JP, Johnson NA. Low-volume high-intensity interval training for cardiometabolic health. J Physiol. 2022;600(5):1013–26. https://doi.org/10.1113/JP281210 .
doi: 10.1113/JP281210
pubmed: 33760255
Tjønna AE, Leinan IM, Bartnes AT, Jenssen BM, Gibala MJ, Winett RA, Wisløff U. Low- and high-volume of intensive endurance training significantly improves maximal oxygen uptake after 10-weeks of training in healthy men. PLoS One. 2013;8(5): e65382. https://doi.org/10.1371/journal.pone.0065382 .
doi: 10.1371/journal.pone.0065382
pubmed: 23734250
Ramos JS, Dalleck LC, Borrani F, Beetham KS, Wallen MP, Mallard AR, Clark B, Gomersall S, Keating SE, Fassett RG, Coombes JS. Low-volume high-intensity interval training is sufficient to ameliorate the severity of metabolic syndrome. Metab Syndr Relat Disord. 2017;15(7):319–28. https://doi.org/10.1089/met.2017.0042 .
doi: 10.1089/met.2017.0042
pubmed: 28846513
Oh S, So R, Shida T, Matsuo T, Kim B, Akiyama K, Isobe T, Okamoto Y, Tanaka K, Shoda J. High-intensity aerobic exercise improves both hepatic fat content and stiffness in sedentary obese men with nonalcoholic fatty liver disease. Sci Rep. 2017;7:43029. https://doi.org/10.1038/srep43029 .
doi: 10.1038/srep43029
pubmed: 28223710
Winding KM, Munch GW, Iepsen UW, Van Hall G, Pedersen BK, Mortensen SP. The effect on glycaemic control of low-volume high-intensity interval training versus endurance training in individuals with type 2 diabetes. Diabetes Obes Metab. 2018;20(5):1131–9. https://doi.org/10.1111/dom.13198 .
doi: 10.1111/dom.13198
pubmed: 29272072
Abdelbasset WK, Tantawy SA, Kamel DM, Alqahtani BA, Elnegamy TE, Soliman GS, Ibrahim AA. Effects of high-intensity interval and moderate-intensity continuous aerobic exercise on diabetic obese patients with nonalcoholic fatty liver disease: a comparative randomized controlled trial. Medicine. 2020;99(10): e19471. https://doi.org/10.1097/MD.0000000000019471 .
doi: 10.1097/MD.0000000000019471
pubmed: 32150108
Poon ET, Little JP, Sit CH, Wong SH. The effect of low-volume high-intensity interval training on cardiometabolic health and psychological responses in overweight/obese middle-aged men. J Sports Sci. 2020;38(17):1997–2004. https://doi.org/10.1080/02640414.2020.1766178 .
doi: 10.1080/02640414.2020.1766178
pubmed: 32497454
Sabag A, Way KL, Sultana RN, Keating SE, Gerofi JA, Chuter VH, Byrne NM, Baker MK, George J, Caterson ID, Twigg SM, Johnson NA. The effect of a novel low-volume aerobic exercise intervention on liver fat in type 2 diabetes: a randomized controlled trial. Diabetes Care. 2020;43(10):2371–8. https://doi.org/10.2337/dc19-2523 .
doi: 10.2337/dc19-2523
pubmed: 32732374
Ryan BJ, Schleh MW, Ahn C, Ludzki AC, Gillen JB, Varshney P, Van Pelt DW, Pitchford LM, Chenevert TL, Gioscia-Ryan RA, Howton SM, Rode T, Hummel SL, Burant CF, Little JP, Horowitz JF. Moderate-intensity exercise and high-intensity interval training affect insulin sensitivity similarly in obese adults. J Clin Endocrinol Metab. 2020;105(8):e2941–59. https://doi.org/10.1210/clinem/dgaa345 .
doi: 10.1210/clinem/dgaa345
pubmed: 32492705
Matsuo T, Saotome K, Seino S, Shimojo N, Matsushita A, Iemitsu M, Ohshima H, Tanaka K, Mukai C. Effects of a low-volume aerobic-type interval exercise on VO
doi: 10.1249/MSS.0b013e3182a38da8
pubmed: 23846165
Wilson GA, Wilkins GT, Cotter JD, Lamberts RR, Lal S, Baldi JC. HIIT improves left ventricular exercise response in adults with type 2 diabetes. Med Sci Sports Exerc. 2019;51(6):1099–105. https://doi.org/10.1249/MSS.0000000000001897 .
doi: 10.1249/MSS.0000000000001897
pubmed: 30640284
Way KL, Sabag A, Sultana RN, Baker MK, Keating SE, Lanting S, Gerofi J, Chuter VH, Caterson ID, Twigg SM, Johnson NA. The effect of low-volume high-intensity interval training on cardiovascular health outcomes in type 2 diabetes: a randomised controlled trial. Int J Cardiol. 2020;320:148–54. https://doi.org/10.1016/j.ijcard.2020.06.019 .
doi: 10.1016/j.ijcard.2020.06.019
pubmed: 32598997
Schulz KF, Altman DG, Moher D, CONSORT Group. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. J Clin Epidemiol. 2010;63(8):834–40. https://doi.org/10.1016/j.jclinepi.2010.02.005 .
doi: 10.1016/j.jclinepi.2010.02.005
pubmed: 20346629
Pattyn N, Beulque R, Cornelissen V. Aerobic interval vs. continuous training in patients with coronary artery disease or heart failure: an updated systematic review and meta-analysis with a focus on secondary outcomes. Sports Med. 2018;48(5):1189–205. https://doi.org/10.1007/s40279-018-0885-5 .
doi: 10.1007/s40279-018-0885-5
pubmed: 29502328
Bonafiglia JT, Islam H, Preobrazenski N, Gurd BJ. Risk of bias and reporting practices in studies comparing VO
doi: 10.1016/j.jshs.2021.03.005
pubmed: 33722760
Charles P, Giraudeau B, Dechartres A, Baron G, Ravaud P. Reporting of sample size calculation in randomised controlled trials: review. BMJ. 2009;338: b1732. https://doi.org/10.1136/bmj.b1732 .
doi: 10.1136/bmj.b1732
pubmed: 19435763
Abt G, Boreham C, Davison G, Jackson R, Nevill A, Wallace E, Williams M. Power, precision, and sample size estimation in sport and exercise science research. J Sports Sci. 2020;38(17):1933–5. https://doi.org/10.1080/02640414.2020.1776002 .
doi: 10.1080/02640414.2020.1776002
pubmed: 32558628
Cheval B, Boisgontier MP. The theory of effort minimization in physical activity. Exerc Sport Sci Rev. 2021;49(3):168–78. https://doi.org/10.1249/JES.0000000000000252 .
doi: 10.1249/JES.0000000000000252
pubmed: 34112744
Ioannidis JP. How to make more published research true. PLoS Med. 2014;11(10): e1001747. https://doi.org/10.1371/journal.pmed.1001747 .
doi: 10.1371/journal.pmed.1001747
pubmed: 25334033
Fanelli D. Redefine misconduct as distorted reporting. Nature. 2013;494(7436):149. https://doi.org/10.1038/494149a .
doi: 10.1038/494149a
pubmed: 23407504
Gibala MJ. High-intensity interval training: a time-efficient strategy for health promotion? Curr Sports Med Rep. 2007;6(4):211–3.
pubmed: 17617995
Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev. 2008;36(2):58–63. https://doi.org/10.1097/JES.0b013e318168ec1f .
doi: 10.1097/JES.0b013e318168ec1f
pubmed: 18362686
Satiroglu R, Lalande S, Hong S, Nagel MJ, Coyle EF. Four-second power cycling training increases maximal anaerobic power, peak oxygen consumption, and total blood volume. Med Sci Sports Exerc. 2021;53(12):2536–42. https://doi.org/10.1249/MSS.0000000000002748 .
doi: 10.1249/MSS.0000000000002748
pubmed: 34310498
Sato S, Yoshida R, Murakoshi F, Sasaki Y, Yahata K, Nosaka K, Nakamura M. Effect of daily 3-s maximum voluntary isometric, concentric, or eccentric contraction on elbow flexor strength. Scand J Med Sci Sports. 2022;32(5):833–43. https://doi.org/10.1111/sms.14138 .
doi: 10.1111/sms.14138
pubmed: 35104387
Wagenmakers EJ. Defiant denial is self-defeating. Psychol Inq. 2021;32(1):12–6. https://doi.org/10.1080/1047840X.2021.1889314 .
doi: 10.1080/1047840X.2021.1889314
Harris C, Rohrer D, Pashler H. A train wreck by any other name. Psychol Inq. 2021;32(1):17–23. https://doi.org/10.1080/1047840X.2021.1889317 .
doi: 10.1080/1047840X.2021.1889317
Sherman JW, Rivers AM. There’s nothing social about social priming: derailing the “train wreck.” Psychol Inq. 2021;32(1):1–11. https://doi.org/10.1080/1047840X.2021.1889312 .
doi: 10.1080/1047840X.2021.1889312
Wiggins BJ, Christopherson CD. The replication crisis in psychology: an overview for theoretical and philosophical psychology. J Theoret Philos Psychol. 2019;39(4):202–17. https://doi.org/10.1037/teo0000137 .
doi: 10.1037/teo0000137
Pashler H, Wagenmakers EJ. Editors’ introduction to the special section on replicability in psychological science: a crisis of confidence? Perspect Psychol Sci. 2012;7(6):528–30. https://doi.org/10.1177/1745691612465253 .
doi: 10.1177/1745691612465253
pubmed: 26168108
Yong E. Nobel laureate challenges psychologists to clean up their act. Nature. 2012. https://doi.org/10.1038/nature.2012.11535 .
doi: 10.1038/nature.2012.11535
pubmed: 22874963
Rodgers JL, Shrout PE. Psychology’s replication crisis as scientific opportunity: a précis for policymakers. Policy Insights Behav Brain Sci. 2018;5(1):134–41. https://doi.org/10.1177/2372732217749254 .
doi: 10.1177/2372732217749254
Sharpe D, Goghari VM. Building a cumulative psychological science. Can Psychol. 2020;61(4):269–72. https://doi.org/10.1037/cap0000252 .
doi: 10.1037/cap0000252
Shrout PE, Rodgers JL. Psychology, science, and knowledge construction: broadening perspectives from the replication crisis. Annu Rev Psychol. 2018;69:487–510. https://doi.org/10.1146/annurev-psych-122216-011845 .
doi: 10.1146/annurev-psych-122216-011845
pubmed: 29300688
Munafò MR, Nosek BA, Bishop DVM, Button KS, Chambers CD, du Sert NP, Simonsohn U, Wagenmakers EJ, Ware JJ, Ioannidis JPA. A manifesto for reproducible science. Nat Hum Behav. 2017;1:0021. https://doi.org/10.1038/s41562-016-0021 .
doi: 10.1038/s41562-016-0021
pubmed: 33954258
Nelson LD, Simmons J, Simonsohn U. Psychology’s renaissance. Annu Rev Psychol. 2018;69:511–34. https://doi.org/10.1146/annurev-psych-122216-011836 .
doi: 10.1146/annurev-psych-122216-011836
pubmed: 29068778
Begley CG, Ellis LM. Drug development: raise standards for preclinical cancer research. Nature. 2012;483(7391):531–3. https://doi.org/10.1038/483531a .
doi: 10.1038/483531a
pubmed: 22460880
Begley CG, Ioannidis JP. Reproducibility in science: improving the standard for basic and preclinical research. Circ Res. 2015;116(1):116–26. https://doi.org/10.1161/CIRCRESAHA.114.303819 .
doi: 10.1161/CIRCRESAHA.114.303819
pubmed: 25552691
Impellizzeri FM, McCall A, Meyer T. Registered reports coming soon: our contribution to better science in football research. Sci Med Football. 2019;3(2):87–8. https://doi.org/10.1080/24733938.2019.1603659 .
doi: 10.1080/24733938.2019.1603659
Nosek BA, Ebersole CR, DeHaven AC, Mellor DT. The preregistration revolution. Proc Natl Acad Sci USA. 2018;115(11):2600–6. https://doi.org/10.1073/pnas.1708274114 .
doi: 10.1073/pnas.1708274114
pubmed: 29531091
Nosek BA, Hardwicke TE, Moshontz H, et al. Replicability, robustness, and reproducibility in psychological science. Annu Rev Psychol. 2022;73:719–48. https://doi.org/10.1146/annurev-psych-020821-114157 .
doi: 10.1146/annurev-psych-020821-114157
pubmed: 34665669
Scheel AM, Schijen MRMJ, Lakens D. An excess of positive results: comparing the standard psychology literature with registered reports. Adv Meth Pract Psychol Sci. 2021. https://doi.org/10.1177/25152459211007467 .
doi: 10.1177/25152459211007467
Schäfer T, Schwarz MA. The meaningfulness of effect sizes in psychological research: differences between sub-disciplines and the impact of potential biases. Front Psychol. 2019;10:813. https://doi.org/10.3389/fpsyg.2019.00813 .
doi: 10.3389/fpsyg.2019.00813
pubmed: 31031679
Abt G, Boreham C, Davison G, Jackson R, Wallace E, Williams AM. Registered reports in the journal of sports sciences. J Sports Sci. 2021;39(16):1789–90. https://doi.org/10.1080/02640414.2021.1950974 .
doi: 10.1080/02640414.2021.1950974
pubmed: 34379576