Defining the cellular complexity of the zebrafish bipotential gonad.
bipotential gonad
endothelial
lymphatic
macrophage
pericyte
reproduction
single-cell
vasculature
zebrafish
Journal
Biology of reproduction
ISSN: 1529-7268
Titre abrégé: Biol Reprod
Pays: United States
ID NLM: 0207224
Informations de publication
Date de publication:
15 Nov 2023
15 Nov 2023
Historique:
pmc-release:
10
08
2024
pubmed:
10
8
2023
medline:
10
8
2023
entrez:
10
8
2023
Statut:
ppublish
Résumé
Zebrafish are routinely used to model reproductive development, function, and disease, yet we still lack a clear understanding of the fundamental steps that occur during early bipotential gonad development, including when endothelial cells, pericytes, and macrophage arrive at the bipotential gonad to support gonad growth and differentiation. Here, we use a combination of transgenic reporters and single-cell sequencing analyses to define the arrival of different critical cell types to the larval zebrafish gonad. We determined that blood initially reaches the gonad via a vessel formed from the swim bladder artery, which we have termed the gonadal artery. We find that vascular and lymphatic development occurs concurrently in the bipotential zebrafish gonad and our data suggest that similar to what has been observed in developing zebrafish embryos, lymphatic endothelial cells in the gonad may be derived from vascular endothelial cells. We mined preexisting sequencing datasets to determine whether ovarian pericytes had unique gene expression signatures. We identified 215 genes that were uniquely expressed in ovarian pericytes, but not expressed in larval pericytes. Similar to what has been shown in the mouse ovary, our data suggest that pdgfrb+ pericytes may support the migration of endothelial tip cells during ovarian angiogenesis. Using a macrophage-driven photoconvertible protein, we found that macrophage established a nascent resident population as early as 12 dpf and can be observed removing cellular material during gonadal differentiation. This foundational information demonstrates that the early bipotential gonad contains complex cellular interactions, which likely shape the health and function of the mature gonad.
Identifiants
pubmed: 37561446
pii: 7240573
doi: 10.1093/biolre/ioad096
pmc: PMC10651076
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
586-600Subventions
Organisme : NIEHS NIH HHS
ID : R00 ES023848
Pays : United States
Organisme : Intramural NIH HHS
ID : Z01 ES030109
Pays : United States
Organisme : NIEHS NIH HHS
ID : F32ES023650
Pays : United States
Organisme : NIEHS NIH HHS
ID : R01 ES030109
Pays : United States
Organisme : NIGMS NIH HHS
ID : P20 GM103652
Pays : United States
Organisme : NIEHS NIH HHS
ID : K99 ES023848
Pays : United States
Commentaires et corrections
Type : UpdateOf
Informations de copyright
© The Author(s) 2023. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Références
Biol Reprod. 2003 Jun;68(6):2055-64
pubmed: 12606340
Dev Dyn. 2017 Nov;246(11):925-945
pubmed: 28856758
Chemosphere. 2023 Jan;310:136723
pubmed: 36241106
Semin Cell Dev Biol. 1998 Aug;9(4):393-400
pubmed: 9813186
Toxicol Sci. 2013 Sep;135(1):241-50
pubmed: 23811824
Biol Reprod. 2006 Jul;75(1):56-67
pubmed: 16672722
Dev Biol. 2007 Apr 15;304(2):735-44
pubmed: 17306248
Toxicol Pathol. 2016 Jan;44(1):98-111
pubmed: 26534939
Pharmacol Ther. 1991;51(2):195-216
pubmed: 1784630
Nature. 2015 Jun 4;522(7554):56-61
pubmed: 25992545
Curr Top Dev Biol. 2019;134:119-149
pubmed: 30999973
Development. 2013 Apr;140(7):1497-506
pubmed: 23462469
Hum Reprod. 1995 Aug;10(8):1992-6
pubmed: 8567828
PLoS Genet. 2016 Sep 19;12(9):e1006323
pubmed: 27642754
Novartis Found Symp. 2007;283:139-48; discussion 148-51, 238-41
pubmed: 18300419
Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):167-72
pubmed: 21173261
Adv Exp Med Biol. 2018;1109:33-51
pubmed: 30523588
Sci Rep. 2018 Jun 25;8(1):9596
pubmed: 29941944
Curr Biol. 2006 Jun 20;16(12):1244-8
pubmed: 16782017
ACS Pharmacol Transl Sci. 2019 Sep 04;2(5):325-332
pubmed: 32259066
Reproduction. 2018 May;155(5):R199-R209
pubmed: 29386378
Oncogene. 2008 Feb 14;27(8):1079-86
pubmed: 17704803
Dev Biol. 2013 Apr 1;376(1):43-50
pubmed: 23348677
Cell Rep. 2022 Jun 14;39(11):110935
pubmed: 35705036
Development. 2021 Dec 1;148(23):
pubmed: 34751773
Development. 2017 Jun 1;144(11):2070-2081
pubmed: 28506987
Hum Reprod Update. 2004 Mar-Apr;10(2):119-33
pubmed: 15073142
J Immunol. 2003 Sep 1;171(5):2637-43
pubmed: 12928417
J Androl. 2012 Jul-Aug;33(4):745-51
pubmed: 22052776
Dev Biol. 2002 Apr 15;244(2):418-28
pubmed: 11944948
Cell. 2021 Jun 24;184(13):3573-3587.e29
pubmed: 34062119
Nat Neurosci. 2017 Jun;20(6):774-783
pubmed: 28459441
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4531-4536
pubmed: 28396408
Development. 2012 Jul;139(13):2381-91
pubmed: 22627281
Development. 1997 Aug;124(16):3157-65
pubmed: 9272956
Eur J Immunol. 2020 Oct;50(10):1500-1514
pubmed: 32459864
Dev Cell. 2012 Apr 17;22(4):824-36
pubmed: 22516200
Genetics. 2014 Nov;198(3):1291-308
pubmed: 25233988
Blood. 2011 Jan 27;117(4):e49-56
pubmed: 21084707
Elife. 2022 May 19;11:
pubmed: 35588359
Reprod Fertil Dev. 2001;13(7-8):661-4
pubmed: 11999318
PLoS One. 2011 Jan 10;6(1):e15846
pubmed: 21264342
Dev Biol. 2007 Apr 15;304(2):811-24
pubmed: 17335798
Nature. 2022 Jun;606(7914):570-575
pubmed: 35614218
Dev Dyn. 1995 Jul;203(3):253-310
pubmed: 8589427
Nature. 2022 Jul;607(7919):540-547
pubmed: 35794482
Dev Biol. 2009 Feb 1;326(1):112-20
pubmed: 19041858
Cell Rep. 2015 Dec 1;13(9):1828-41
pubmed: 26655899
Physiol Rev. 2007 Jan;87(1):1-28
pubmed: 17237341
Endocrinology. 2010 Nov;151(11):5446-55
pubmed: 20843998
Dev Dyn. 2010 Oct;239(10):2714-21
pubmed: 20737503
Dev Dyn. 1999 Oct;216(2):153-67
pubmed: 10536055
PLoS Genet. 2017 Sep 5;13(9):e1006993
pubmed: 28873404
Development. 2002 Jun;129(12):3009-19
pubmed: 12050147
Methods Cell Biol. 2017;138:221-238
pubmed: 28129845
Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3566-70
pubmed: 7724599
Aust N Z J Obstet Gynaecol. 2006 Feb;46(1):4-14
pubmed: 16441686
Genes Dev. 2013 Nov 15;27(22):2409-26
pubmed: 24240231
Circ Res. 2005 Sep 16;97(6):512-23
pubmed: 16166562
Nat Med. 2003 Jun;9(6):669-76
pubmed: 12778165
Nat Immunol. 2004 Jan;5(1):74-80
pubmed: 14634646
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):E2384-93
pubmed: 24912173
Nat Commun. 2018 Nov 19;9(1):4860
pubmed: 30451830
Biol Reprod. 1998 Mar;58(3):705-11
pubmed: 9510957
Cell Tissue Res. 2010 Oct;342(1):117-30
pubmed: 20848132
Sci Rep. 2018 May 25;8(1):8171
pubmed: 29802255
Cells. 2019 Sep 19;8(9):
pubmed: 31546913
Dev Cell. 2012 Sep 11;23(3):587-99
pubmed: 22975327
Blood. 2010 Aug 5;116(5):829-40
pubmed: 20404134
Rev Reprod. 1996 Sep;1(3):182-92
pubmed: 9414456
Development. 2016 Apr 15;143(8):1328-39
pubmed: 26952986
Semin Cell Dev Biol. 2021 Nov;119:101-110
pubmed: 34330619
Toxicol Sci. 2009 May;109(1):75-87
pubmed: 19279074
Dev Cell. 2011 Mar 15;20(3):397-404
pubmed: 21397850
Development. 2014 Mar;141(6):1228-38
pubmed: 24523456
PLoS One. 2012;7(12):e52620
pubmed: 23285114
Development. 2009 Jan;136(1):129-38
pubmed: 19036799
Toxicol Sci. 2006 Apr;90(2):490-9
pubmed: 16387744
Development. 2014 Jul;141(13):2680-90
pubmed: 24903752
PLoS One. 2010 Jun 25;5(6):e11324
pubmed: 20593033
Development. 2010 Aug;137(16):2653-7
pubmed: 20610484
Zebrafish. 2014 Aug;11(4):396-406
pubmed: 24979389
Mol Hum Reprod. 2020 Aug 1;26(8):585-600
pubmed: 32467982
Adv Exp Med Biol. 2012;763:186-92
pubmed: 23397625
Nature. 2013 Apr 25;496(7446):498-503
pubmed: 23594743
Cell Death Dis. 2022 Sep 6;13(9):768
pubmed: 36068200
Reproduction. 2009 Dec;138(6):869-81
pubmed: 19786399
Biol Reprod. 2021 Mar 11;104(3):527-538
pubmed: 33274732
Nature. 1995 Jul 6;376(6535):66-70
pubmed: 7596436
Nat Genet. 2009 Apr;41(4):396-8
pubmed: 19287381
Nat Biotechnol. 2015 May;33(5):495-502
pubmed: 25867923