Cell anatomy and network input explain differences within but not between leech touch cells at two different locations.
invertebrate
mechanoreceptor
multi-compartment model
neuronal anatomy
neuronal excitability
response variability
Journal
Frontiers in cellular neuroscience
ISSN: 1662-5102
Titre abrégé: Front Cell Neurosci
Pays: Switzerland
ID NLM: 101477935
Informations de publication
Date de publication:
2023
2023
Historique:
received:
15
03
2023
accepted:
06
07
2023
medline:
11
8
2023
pubmed:
11
8
2023
entrez:
11
8
2023
Statut:
epublish
Résumé
Mechanosensory cells in the leech share several common features with mechanoreceptors in the human glabrous skin. Previous studies showed that the six T (touch) cells in each body segment of the leech are highly variable in their responses to somatic current injection and change their excitability over time. Here, we investigate three potential reasons for this variability in excitability by comparing the responses of T cells at two soma locations (T2 and T3): (1) Differential effects of time-dependent changes in excitability, (2) divergent synaptic input from the network, and (3) different anatomical structures. These hypotheses were explored with a combination of electrophysiological double recordings, 3D reconstruction of neurobiotin-filled cells, and compartmental model simulations. Current injection triggered significantly more spikes with shorter latency and larger amplitudes in cells at soma location T2 than at T3. During longer recordings, cells at both locations increased their excitability over time in the same way. T2 and T3 cells received the same amount of synaptic input from the unstimulated network, and the polysynaptic connections between both T cells were mutually symmetric. However, we found a striking anatomical difference: While in our data set all T2 cells innervated two roots connecting the ganglion with the skin, 50% of the T3 cells had only one root process. The sub-sample of T3 cells with one root process was significantly less excitable than the T3 cells with two root processes and the T2 cells. To test if the additional root process causes higher excitability, we simulated the responses of 3D reconstructed cells of both anatomies with detailed multi-compartment models. The anatomical subtypes do not differ in excitability when identical biophysical parameters and a homogeneous channel distribution are assumed. Hence, all three hypotheses may contribute to the highly variable T cell responses, but none of them is the only factor accounting for the observed systematic difference in excitability between cells at T2 vs. T3 soma location. Therefore, future patch clamp and modeling studies are needed to analyze how biophysical properties and spatial distribution of ion channels on the cell surface contribute to the variability and systematic differences of electrophysiological phenotypes.
Identifiants
pubmed: 37565030
doi: 10.3389/fncel.2023.1186997
pmc: PMC10411907
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1186997Informations de copyright
Copyright © 2023 Meiser, Sleeboom, Arkhypchuk, Sandbote and Kretzberg.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Neuroscience. 2022 May 1;489:185-199
pubmed: 34116137
J Neurosci. 2020 Feb 26;40(9):1888-1896
pubmed: 31980584
J Neurobiol. 1989 Jul;20(5):422-34
pubmed: 2545814
J Neurophysiol. 2008 Sep;100(3):1160-8
pubmed: 18614753
Genome Res. 2014 Jun;24(6):930-41
pubmed: 24671852
J Neurosci. 2016 Mar 30;36(13):3636-47
pubmed: 27030751
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Jan;189(1):59-67
pubmed: 12548431
Vision Res. 2007 Nov;47(25):3125-31
pubmed: 17936871
Elife. 2019 Aug 20;8:
pubmed: 31429824
Nat Neurosci. 2004 Dec;7(12):1345-52
pubmed: 15558066
Front Physiol. 2016 Oct 28;7:506
pubmed: 27840612
PLoS One. 2015 Mar 23;10(3):e0121156
pubmed: 25799449
Cell. 2008 Oct 31;135(3):422-35
pubmed: 18984155
Prog Neurobiol. 2005 Aug;76(5):279-327
pubmed: 16260077
BMC Genomics. 2021 Mar 25;22(1):215
pubmed: 33765928
J Physiol. 1981 Feb;311:565-83
pubmed: 6267257
Front Cell Neurosci. 2022 Apr 27;16:858221
pubmed: 35573827
Nat Neurosci. 2015 Dec;18(12):1713-21
pubmed: 26605882
J Comp Neurol. 2016 Dec 15;524(18):3677-3695
pubmed: 27636374
J Physiol. 1969 Aug;203(3):571-89
pubmed: 5387027
Curr Biol. 2015 Apr 20;25(8):R324-5
pubmed: 25898099
J Neurosci. 1999 Feb 15;19(4):1203-16
pubmed: 9952398
J Neurophysiol. 1968 Sep;31(5):740-56
pubmed: 5711143
Comp Biochem Physiol A Comp Physiol. 1991;100(1):33-40
pubmed: 1718657
Nature. 2021 Oct;598(7879):174-181
pubmed: 34616072
Neuron. 2010 Jan 28;65(2):150-64
pubmed: 20152123
J Neurosci. 2003 Nov 26;23(34):10776-83
pubmed: 14645469
Neuron. 2014 Sep 17;83(6):1418-30
pubmed: 25199704
J Neurobiol. 1995 Jul;27(3):419-33
pubmed: 7545737
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Front Physiol. 2019 Nov 27;10:1444
pubmed: 31827443
Nat Rev Neurosci. 2008 Apr;9(4):292-303
pubmed: 18319728
Annu Rev Neurosci. 2021 Jul 8;44:335-357
pubmed: 33770451
PLoS One. 2018 Jul 20;13(7):e0201206
pubmed: 30028871
Prog Neurobiol. 2001 Dec;65(6):545-91
pubmed: 11728644
Neural Comput. 2016 Aug;28(8):1453-97
pubmed: 27348420
Front Physiol. 2018 Mar 07;9:173
pubmed: 29563881
Curr Opin Neurobiol. 2009 Oct;19(5):553-60
pubmed: 19781935
Neural Comput. 2003 Nov;15(11):2523-64
pubmed: 14577853
Annu Rev Neurosci. 2009;32:33-55
pubmed: 19400721
Neuron. 2019 Aug 21;103(4):598-616.e7
pubmed: 31248728
Elife. 2020 Feb 13;9:
pubmed: 32039761
Nat Commun. 2016 Apr 21;7:11380
pubmed: 27098773
Curr Biol. 2016 Oct 24;26(20):R960-R965
pubmed: 27780069
Trends Neurosci. 2009 May;32(5):267-74
pubmed: 19299025
J Physiol. 1991 Sep;441:733-54
pubmed: 1667805
PLoS Comput Biol. 2013;9(12):e1003338
pubmed: 24339755
J Exp Biol. 2015 Nov;218(Pt 21):3353-9
pubmed: 26538172
Trends Neurosci. 2013 Jul;36(7):375-84
pubmed: 23608298
J Physiol. 1976 Dec;263(3):513-38
pubmed: 1018277
Nat Rev Neurosci. 2011 Jun 20;12(7):375-87
pubmed: 21685931
Science. 1966 Jun 17;152(3729):1637-40
pubmed: 5936887
Annu Rev Neurosci. 2014;37:329-46
pubmed: 25032499
J Physiol. 1981 Nov;320:219-28
pubmed: 7320936
Annu Rev Neurosci. 2020 Jul 8;43:95-117
pubmed: 32075520
J Neurosci Res. 2020 Jun;98(6):1232-1249
pubmed: 32096570
Sci Rep. 2018 Aug 22;8(1):12579
pubmed: 30135467
Nat Methods. 2021 Apr;18(4):374-377
pubmed: 33795878
J Physiol. 1969 Aug;203(3):591-609
pubmed: 4319015
Elife. 2017 Sep 25;6:
pubmed: 28944754
Proc R Soc Lond B Biol Sci. 1976 Nov 12;194(1117):481-99
pubmed: 12513