Clinical evaluation of k-space correlation informed motion artifact detection in segmented multi-slice MRI.


Journal

Proceedings of the International Society for Magnetic Resonance in Medicine ... Scientific Meeting and Exhibition. International Society for Magnetic Resonance in Medicine. Scientific Meeting and Exhibition
ISSN: 1524-6965
Titre abrégé: Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib
Pays: United States
ID NLM: 100901626

Informations de publication

Date de publication:
Jun 2023
Historique:
medline: 11 8 2023
pubmed: 11 8 2023
entrez: 11 8 2023
Statut: ppublish

Résumé

Motion artifacts can negatively impact diagnosis, patient experience, and radiology workflow especially when a patient recall is required. Detecting motion artifacts while the patient is still in the scanner could potentially improve workflow and reduce costs by enabling immediate corrective action. We demonstrate in a clinical k-space dataset that using cross-correlation between adjacent phase-encoding lines can detect motion artifacts directly from raw k-space in multi-shot multi-slice scans. We train a split-attention residual network to examine the performance in predicting motion artifact severity. The network is trained on simulated data and tested on real clinical data.

Identifiants

pubmed: 37565069
pmc: PMC10414784
mid: NIHMS1871408
pii:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : NIBIB NIH HHS
ID : R21 EB018907
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG016495
Pays : United States
Organisme : NIMH NIH HHS
ID : RF1 MH123195
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS105820
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG008122
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG072431
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB019956
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG068261
Pays : United States
Organisme : NIA NIH HHS
ID : R56 AG064027
Pays : United States
Organisme : NIBIB NIH HHS
ID : P41 EB030006
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR023043
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB006758
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH093765
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS070963
Pays : United States
Organisme : NINDS NIH HHS
ID : U01 NS086625
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR019307
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG070988
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS052585
Pays : United States
Organisme : NIMH NIH HHS
ID : RF1 MH121885
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB023281
Pays : United States
Organisme : NICHD NIH HHS
ID : K99 HD101553
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH117023
Pays : United States
Organisme : NINDS NIH HHS
ID : R21 NS072652
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS083534
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR023401
Pays : United States

Références

IEEE Trans Med Imaging. 2004 Jul;23(7):903-21
pubmed: 15250643
J Magn Reson Imaging. 2012 Aug;36(2):332-43
pubmed: 22581754
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2023 Jun;2023:
pubmed: 37565069
IEEE Trans Med Imaging. 2022 Mar;41(3):543-558
pubmed: 34587005
Magn Reson Med. 2014 Mar;71(3):990-1001
pubmed: 23649942
J Am Coll Radiol. 2015 Jul;12(7):689-95
pubmed: 25963225
Magn Reson Med. 2011 Apr;65(4):1084-9
pubmed: 21413072

Auteurs

Ikbeom Jang (I)

Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.
Department of Radiology, Harvard Medical School, Boston, MA, United States.

Malte Hoffmann (M)

Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.
Department of Radiology, Harvard Medical School, Boston, MA, United States.

Nalini Singh (N)

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States.
Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States.

Yael Balbastre (Y)

Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.

Lina Chen (L)

Data Science Office, Mass General Brigham, Boston, MA, United States.

Marcio Aloisio Bezerra Cavalcanti Rockenbach (MABC)

Data Science Office, Mass General Brigham, Boston, MA, United States.

Adrian Dalca (A)

Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.
Department of Radiology, Harvard Medical School, Boston, MA, United States.
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States.

Iman Aganj (I)

Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.
Department of Radiology, Harvard Medical School, Boston, MA, United States.

Jayashree Kalpathy-Cramer (J)

Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.
Department of Radiology, Harvard Medical School, Boston, MA, United States.

Bruce Fischl (B)

Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.
Department of Radiology, Harvard Medical School, Boston, MA, United States.
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States.
Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States.

Robert Frost (R)

Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.
Department of Radiology, Harvard Medical School, Boston, MA, United States.

Classifications MeSH