Predicting the Effect of Single Mutations on Protein Stability and Binding with Respect to Types of Mutations.

binding free energy change folding free energy change mutations single nucleotide variant

Journal

International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791

Informations de publication

Date de publication:
28 Jul 2023
Historique:
received: 11 07 2023
revised: 24 07 2023
accepted: 26 07 2023
medline: 14 8 2023
pubmed: 12 8 2023
entrez: 12 8 2023
Statut: epublish

Résumé

The development of methods and algorithms to predict the effect of mutations on protein stability, protein-protein interaction, and protein-DNA/RNA binding is necessitated by the needs of protein engineering and for understanding the molecular mechanism of disease-causing variants. The vast majority of the leading methods require a database of experimentally measured folding and binding free energy changes for training. These databases are collections of experimental data taken from scientific investigations typically aimed at probing the role of particular residues on the above-mentioned thermodynamic characteristics, i.e., the mutations are not introduced at random and do not necessarily represent mutations originating from single nucleotide variants (SNV). Thus, the reported performance of the leading algorithms assessed on these databases or other limited cases may not be applicable for predicting the effect of SNVs seen in the human population. Indeed, we demonstrate that the SNVs and non-SNVs are not equally presented in the corresponding databases, and the distribution of the free energy changes is not the same. It is shown that the Pearson correlation coefficients (PCCs) of folding and binding free energy changes obtained in cases involving SNVs are smaller than for non-SNVs, indicating that caution should be used in applying them to reveal the effect of human SNVs. Furthermore, it is demonstrated that some methods are sensitive to the chemical nature of the mutations, resulting in PCCs that differ by a factor of four across chemically different mutations. All methods are found to underestimate the energy changes by roughly a factor of 2.

Identifiants

pubmed: 37569449
pii: ijms241512073
doi: 10.3390/ijms241512073
pmc: PMC10418460
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM093937
Pays : United States
Organisme : NIH HHS
ID : R01GM093937
Pays : United States

Références

Curr Opin Struct Biol. 2023 Jun;80:102572
pubmed: 36965249
J Chem Inf Model. 2023 May 8;63(9):2728-2734
pubmed: 37079618
J Mol Biol. 2002 Jul 5;320(2):369-87
pubmed: 12079393
Science. 2000 Jun 2;288(5471):1590
pubmed: 10858137
Bioinformatics. 2009 Oct 1;25(19):2537-43
pubmed: 19654118
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W314-9
pubmed: 24829462
J Chem Inf Model. 2020 Apr 27;60(4):2388-2395
pubmed: 32203653
Nucleic Acids Res. 2022 Jan 7;50(D1):D1528-D1534
pubmed: 34606614
Sci Rep. 2017 Apr 10;7:45812
pubmed: 28393861
Bioinformatics. 2018 Nov 1;34(21):3653-3658
pubmed: 29722803
Nucleic Acids Res. 1999 Jan 1;27(1):286-8
pubmed: 9847203
Bioinformatics. 2016 Oct 1;32(19):2936-46
pubmed: 27318206
Bioinformatics. 2018 Mar 1;34(5):779-786
pubmed: 29091991
Bioinformatics. 2015 Sep 1;31(17):2816-21
pubmed: 25957347
Curr Protein Pept Sci. 2011 Sep;12(6):490-502
pubmed: 21787301
PLoS One. 2023 Mar 30;18(3):e0283727
pubmed: 36996153
Bioinformatics. 2019 Feb 1;35(3):462-469
pubmed: 30020414
Bioinformatics. 2020 Mar 1;36(6):1725-1730
pubmed: 31713585
Int J Mol Sci. 2021 Jan 09;22(2):
pubmed: 33435356
Nucleic Acids Res. 2017 Jul 3;45(W1):W229-W235
pubmed: 28525590
Monoclon Antib Immunodiagn Immunother. 2023 Apr;42(2):73-76
pubmed: 37129305
Protein Sci. 2023 Jan;32(1):e4527
pubmed: 36461907
J Med Chem. 2021 Jun 24;64(12):8410-8422
pubmed: 34110823
Int J Mol Sci. 2016 Apr 07;17(4):512
pubmed: 27070572
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W215-22
pubmed: 21593128
J Chem Phys. 2018 Aug 21;149(7):072317
pubmed: 30134731
Nature. 2023 Apr;616(7958):843-848
pubmed: 37076626
Nucleic Acids Res. 2017 Jul 3;45(W1):W241-W246
pubmed: 28383703
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W333-9
pubmed: 23723246
Bioinformatics. 2016 Aug 15;32(16):2542-4
pubmed: 27153629
Curr Opin Struct Biol. 2022 Feb;72:161-168
pubmed: 34922207
Nucleic Acids Res. 2019 Jul 2;47(W1):W338-W344
pubmed: 31114883
Nucleic Acids Res. 2021 Jan 8;49(D1):D420-D424
pubmed: 33196841
Proteins. 2019 Feb;87(2):110-119
pubmed: 30417935
Biophys J. 2007 Nov 15;93(10):3340-52
pubmed: 17693468
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D204-6
pubmed: 16381846
iScience. 2020 Mar 27;23(3):100939
pubmed: 32169820
Monoclon Antib Immunodiagn Immunother. 2021 Aug;40(4):196-200
pubmed: 34283661
Bioinformatics. 2021 May 17;37(7):992-999
pubmed: 32866236
J Chem Theory Comput. 2018 Jul 10;14(7):3418-3427
pubmed: 29791148
J Chem Theory Comput. 2022 Dec 13;18(12):7751-7763
pubmed: 36459593
Wiley Interdiscip Rev RNA. 2023 Jan 24;:e1781
pubmed: 36693636
Front Mol Biosci. 2023 Jan 05;9:1075570
pubmed: 36685278
Int J Mol Sci. 2020 Apr 07;21(7):
pubmed: 32272725
Nature. 2023 Apr;616(7958):828-835
pubmed: 37020021
Nature. 2023 Mar 16;:
pubmed: 36928406
Brief Bioinform. 2020 Jul 15;21(4):1285-1292
pubmed: 31273374
Proteins. 2016 Feb;84(2):232-9
pubmed: 26650512
Int J Mol Sci. 2016 Apr 12;17(4):547
pubmed: 27077847
Brief Bioinform. 2021 Nov 5;22(6):
pubmed: 34058752
BMC Bioinformatics. 2011 May 13;12:151
pubmed: 21569468
J Mol Biol. 2016 Mar 27;428(6):1394-1405
pubmed: 26804571
BMC Bioinformatics. 2015 Apr 16;16:116
pubmed: 25885774
Protein Eng. 2000 Dec;13(12):849-56
pubmed: 11239084
Bioinformatics. 2001 Nov;17(11):1027-34
pubmed: 11724731
J Chem Inf Model. 2023 Apr 24;63(8):2512-2519
pubmed: 37042771
Bioinformatics. 2021 Nov 5;37(21):3760-3765
pubmed: 34343273
PLoS Comput Biol. 2018 Dec 11;14(12):e1006615
pubmed: 30533007
J Mol Biol. 2017 Feb 3;429(3):426-434
pubmed: 27899282
Bioinformatics. 2014 Feb 01;30(3):335-42
pubmed: 24281696
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W306-10
pubmed: 15980478
Bioinformatics. 2012 Oct 15;28(20):2600-7
pubmed: 22859501

Auteurs

Preeti Pandey (P)

Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.

Shailesh Kumar Panday (SK)

Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.

Prawin Rimal (P)

Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.

Nicolas Ancona (N)

Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.

Emil Alexov (E)

Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH