In Vivo Zymosan Treatment Induces IL15-Secreting Macrophages and KLRG1-Expressing NK Cells in Mice.


Journal

Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009

Informations de publication

Date de publication:
31 Jul 2023
Historique:
received: 29 06 2023
revised: 26 07 2023
accepted: 28 07 2023
medline: 14 8 2023
pubmed: 12 8 2023
entrez: 12 8 2023
Statut: epublish

Résumé

Beta-glucan (β-glucan) is a natural polysaccharide produced by fungi, bacteria, and plants. Although it has been reported that β-glucan enhances innate immune memory responses, it is unclear whether different types of β-glucans display similar immune effects. To address this issue, we employed zymosan (β-1,3-glycosidic linkage) and pustulan (β-1,6-glycosidic linkage) to investigate their in vivo effects on innate memory immune responses. We examined the changes of innate memory-related markers in macrophages and natural killer (NK) cells, two immune cell types that display innate memory characteristics, at two different time points (16 h and 7 days) after β-glucan stimulation. We found that short-term (16 h) zymosan treatment significantly induced macrophages to upregulate IL15 production and increased surface IL15Rα expression on NK cells. In addition, long-term (7 days) zymosan treatment significantly induced macrophages to upregulate the expression of innate memory-related markers (e.g., TNFα, HIF1α, and mTOR) and induced NK cells to express enhanced levels of KLRG1, known as an innate memory-like marker. Our results provide support that zymosan can be an effective adjuvant to promote innate memory immune responses, providing a bridge between innate and adaptive immune cells to enhance various immune responses such as those directed against tumors.

Identifiants

pubmed: 37570749
pii: molecules28155779
doi: 10.3390/molecules28155779
pmc: PMC10421142
pii:
doi:

Substances chimiques

Zymosan 9010-72-4
Interleukin-15 0
beta-Glucans 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIDDK NIH HHS
ID : P30 DK058404
Pays : United States

Références

Science. 2016 Apr 22;352(6284):aaf1098
pubmed: 27102489
In Vivo. 2015 May-Jun;29(3):359-63
pubmed: 25977381
Hum Reprod. 2014 Oct 10;29(10):2176-89
pubmed: 25035432
Science. 2014 Sep 26;345(6204):1251086
pubmed: 25258085
Int J Mol Sci. 2021 Jan 27;22(3):
pubmed: 33513946
Semin Immunol. 2017 Jun;31:11-19
pubmed: 28863960
Molecules. 2022 Dec 09;27(24):
pubmed: 36557876
J Thorac Oncol. 2023 Mar;18(3):350-368
pubmed: 36410696
Front Immunol. 2022 Sep 13;13:951592
pubmed: 36177042
Front Immunol. 2013 Jan 04;3:403
pubmed: 23316194
J Hematol Oncol. 2009 Jun 10;2:25
pubmed: 19515245
Immune Netw. 2011 Aug;11(4):191-5
pubmed: 22039366
Vaccine. 2018 Aug 23;36(35):5235-5244
pubmed: 30049632
Front Immunol. 2018 Oct 02;9:2168
pubmed: 30333822
Immunol Lett. 2015 Sep;167(1):41-6
pubmed: 26183538
J Immunol. 2006 Jun 15;176(12):7736-44
pubmed: 16751421
Mol Nutr Food Res. 2021 Jan;65(1):e1901071
pubmed: 32223047
Nat Immunol. 2007 Aug;8(8):856-63
pubmed: 17618288
Nat Immunol. 2021 Jan;22(1):2-6
pubmed: 33293712
Blood. 2011 Jul 14;118(2):330-8
pubmed: 21551236
Elife. 2021 Aug 16;10:
pubmed: 34396954
Blood. 2007 May 1;109(9):3776-85
pubmed: 17218381
J Exp Clin Cancer Res. 2019 Jul 19;38(1):321
pubmed: 31324197
J Invest Dermatol. 2021 Jun;141(6):1512-1521
pubmed: 33186589
Sci Transl Med. 2020 Feb 26;12(532):
pubmed: 32102931
Int J Biol Macromol. 2020 May 6;:
pubmed: 32387602
Science. 2014 Sep 26;345(6204):1250684
pubmed: 25258083
J Immunol. 2014 Feb 15;192(4):1954-61
pubmed: 24415778
Immune Netw. 2018 Feb 26;18(1):e15
pubmed: 29503745
Commun Biol. 2022 May 12;5(1):449
pubmed: 35551269
Cancer Immunol Immunother. 2021 Feb;70(2):547-561
pubmed: 32860527
Front Immunol. 2022 Sep 02;13:979370
pubmed: 36119077
Trends Immunol. 2022 Oct;43(10):833-847
pubmed: 36058806
J Inflamm (Lond). 2018 Mar 22;15:5
pubmed: 29588627
PLoS One. 2012;7(5):e36928
pubmed: 22629344
Immunol Rev. 2009 Jul;230(1):38-50
pubmed: 19594628
Nat Immunol. 2020 Dec;21(12):1496-1505
pubmed: 33106668
Int J Mol Sci. 2022 Dec 05;23(23):
pubmed: 36499642
Biomedicines. 2021 Nov 04;9(11):
pubmed: 34829848
Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21647-52
pubmed: 21098276

Auteurs

Hyun Jung Park (HJ)

Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea.

Sung Won Lee (SW)

Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju 26339, Republic of Korea.

Yun Hoo Park (YH)

Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea.

Tae-Cheol Kim (TC)

Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea.

Sujin Lee (S)

Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea.

Seyeong Lee (S)

Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea.

Luc Van Kaer (L)

Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.

Seokmann Hong (S)

Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH