Comparatively Evolution and Expression Analysis of GRF Transcription Factor Genes in Seven Plant Species.
GIF
GRF
abiotic stress
evolution
expression pattern
interaction
Journal
Plants (Basel, Switzerland)
ISSN: 2223-7747
Titre abrégé: Plants (Basel)
Pays: Switzerland
ID NLM: 101596181
Informations de publication
Date de publication:
27 Jul 2023
27 Jul 2023
Historique:
received:
08
07
2023
revised:
16
07
2023
accepted:
20
07
2023
medline:
12
8
2023
pubmed:
12
8
2023
entrez:
12
8
2023
Statut:
epublish
Résumé
Growth regulatory factors (GRF) are plant-specific transcription factors that play pivotal roles in growth and various abiotic stresses regulation. However, adaptive evolution of GRF gene family in land plants are still being elucidated. Here, we performed the evolutionary and expression analysis of GRF gene family from seven representative species. Extensive phylogenetic analyses and gene structure analysis revealed that the number of genes, QLQ domain and WRC domain identified in higher plants was significantly greater than those identified in lower plants. Besides, dispersed duplication and WGD/segmental duplication effectively promoted expansion of the GRF gene family. The expression patterns of GRF gene family and target genes were found in multiple floral organs and abundant in actively growing tissues. They were also found to be particularly expressed in response to various abiotic stresses, with stress-related elements in promoters, implying potential roles in floral development and abiotic stress. Our analysis in GRF gene family interaction network indicated the similar results that GRFs resist to abiotic stresses with the cooperation of other transcription factors like GIFs. This study provides insights into evolution in the GRF gene family, together with expression patterns valuable for future functional researches of plant abiotic stress biology.
Identifiants
pubmed: 37570944
pii: plants12152790
doi: 10.3390/plants12152790
pmc: PMC10421444
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Nucleic Acids Res. 2012 Apr;40(7):e49
pubmed: 22217600
Plant J. 2003 Oct;36(1):94-104
pubmed: 12974814
Nat Plants. 2022 Apr;8(4):434-450
pubmed: 35437002
J Exp Bot. 2012 Jun;63(10):3727-40
pubmed: 22442419
G3 (Bethesda). 2021 Apr 15;11(4):
pubmed: 33856017
Front Plant Sci. 2013 Jul 31;4:273
pubmed: 23914193
Plant Cell. 2017 Jun;29(6):1425-1439
pubmed: 28576847
Biochem Biophys Res Commun. 2017 Dec 2;493(4):1450-1456
pubmed: 28988107
Nat Genet. 2021 Aug;53(8):1250-1259
pubmed: 34267370
Genet Mol Biol. 2020 Jul 24;43(3):20200080
pubmed: 32706846
Curr Opin Genet Dev. 2001 Dec;11(6):681-4
pubmed: 11682313
Physiol Mol Biol Plants. 2022 Sep;28(9):1717-1735
pubmed: 36387975
J Exp Bot. 2021 Jun 03;:
pubmed: 34081133
Front Genet. 2022 Jul 26;13:894844
pubmed: 35957683
Nat Plants. 2021 Apr;7(4):500-513
pubmed: 33846597
Nat Commun. 2019 Jan 25;10(1):464
pubmed: 30683940
Trends Plant Sci. 2021 Mar;26(3):201-204
pubmed: 33349565
Plant Physiol. 2023 Jan 2;191(1):747-771
pubmed: 36315103
BMC Plant Biol. 2021 Jun 12;21(1):271
pubmed: 34118890
Mol Plant. 2015 Jul;8(7):998-1010
pubmed: 25620770
Plant Physiol. 2014 May;165(1):160-74
pubmed: 24596329
J Integr Plant Biol. 2010 Aug;52(8):712-22
pubmed: 20666927
Front Genet. 2022 Aug 12;13:844385
pubmed: 36035157
Plants (Basel). 2021 Sep 15;10(9):
pubmed: 34579449
Int J Mol Sci. 2022 Jun 21;23(13):
pubmed: 35805911
Open Life Sci. 2022 Mar 11;17(1):155-171
pubmed: 35350448
Plant J. 2008 Feb;53(3):437-49
pubmed: 18179651
Mol Plant. 2020 Aug 3;13(8):1194-1202
pubmed: 32585190
Plant Cell. 2012 Aug;24(8):3393-405
pubmed: 22942381
Nat Biotechnol. 2010 Sep;28(9):951-6
pubmed: 20729833
Microbiome. 2022 Jan 16;10(1):5
pubmed: 35034639
Commun Biol. 2019 Jun 21;2:237
pubmed: 31263781
Nucleic Acids Res. 2009 Jan;37(Database issue):D205-10
pubmed: 18984618
J Integr Plant Biol. 2016 Oct;58(10):836-847
pubmed: 26936408
Gene. 2017 Jul 15;620:36-45
pubmed: 28363779
Genes (Basel). 2018 Feb 20;9(2):
pubmed: 29461467
Mol Plant. 2022 Nov 7;15(11):1696-1709
pubmed: 36016495
Plants (Basel). 2021 Dec 11;10(12):
pubmed: 34961196
Plant Physiol. 2000 Mar;122(3):695-704
pubmed: 10712532
Plant Cell. 2020 Apr;32(4):1018-1034
pubmed: 32060178
Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296
pubmed: 33885785
Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259
pubmed: 30931475
Plant Biotechnol J. 2022 Aug;20(8):1591-1605
pubmed: 35514030
New Phytol. 2021 Apr;230(2):612-628
pubmed: 33423287
Planta. 2002 Mar;214(5):694-702
pubmed: 11882937
Plant J. 2005 Jul;43(1):68-78
pubmed: 15960617
Nat Biotechnol. 2020 Nov;38(11):1274-1279
pubmed: 33046875
Plant Cell Physiol. 2020 May 1;61(5):978-987
pubmed: 32154879
Nat Commun. 2019 Mar 21;10(1):1303
pubmed: 30899015
Int J Mol Sci. 2021 Feb 14;22(4):
pubmed: 33673010
Plant Cell Environ. 2021 Jul;44(7):2018-2033
pubmed: 33314270
Gene. 2018 Jan 10;639:117-127
pubmed: 28978430
Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13374-9
pubmed: 15326298
Nat Commun. 2014 Sep 30;5:5098
pubmed: 25267112
Plant J. 2020 Aug;103(4):1386-1398
pubmed: 32391591
Genome Biol. 2019 Feb 21;20(1):38
pubmed: 30791939
Brief Bioinform. 2019 Jul 19;20(4):1160-1166
pubmed: 28968734
J Exp Bot. 2020 Feb 19;71(4):1402-1417
pubmed: 31701146
Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489
pubmed: 33237286
Nucleic Acids Res. 2023 Jan 6;51(D1):D418-D427
pubmed: 36350672
Genes (Basel). 2021 Jun 27;12(7):
pubmed: 34199012
PeerJ. 2022 May 13;10:e13372
pubmed: 35586135
PLoS One. 2014 Jun 10;9(6):e98679
pubmed: 24914678
BMC Genomics. 2019 Apr 1;20(1):256
pubmed: 30935385
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8
pubmed: 19458158
Plant Cell Physiol. 2004 Jul;45(7):897-904
pubmed: 15295073
J Exp Bot. 2015 Oct;66(20):6093-107
pubmed: 26160584