The need for a clinical case definition in test-negative design studies estimating vaccine effectiveness.
Journal
NPJ vaccines
ISSN: 2059-0105
Titre abrégé: NPJ Vaccines
Pays: England
ID NLM: 101699863
Informations de publication
Date de publication:
12 Aug 2023
12 Aug 2023
Historique:
received:
13
03
2023
accepted:
01
08
2023
medline:
13
8
2023
pubmed:
13
8
2023
entrez:
12
8
2023
Statut:
epublish
Résumé
Test negative studies have been used extensively for the estimation of COVID-19 vaccine effectiveness (VE). Such studies are able to estimate VE against medically-attended illness under certain assumptions. Selection bias may be present if the probability of participation is associated with vaccination or COVID-19, but this can be mitigated through use of a clinical case definition to screen patients for eligibility, which increases the likelihood that cases and non-cases come from the same source population. We examined the extent to which this type of bias could harm COVID-19 VE through systematic review and simulation. A systematic review of test-negative studies was re-analysed to identify studies ignoring the need for clinical criteria. Studies using a clinical case definition had a lower pooled VE estimate compared with studies that did not. Simulations varied the probability of selection by case and vaccination status. Positive bias away from the null (i.e., inflated VE consistent with the systematic review) was observed when there was a higher proportion of healthy, vaccinated non-cases, which may occur if a dataset contains many results from asymptomatic screening in settings where vaccination coverage is high. We provide an html tool for researchers to explore site-specific sources of selection bias in their own studies. We recommend all groups consider the potential for selection bias in their vaccine effectiveness studies, particularly when using administrative data.
Identifiants
pubmed: 37573443
doi: 10.1038/s41541-023-00716-9
pii: 10.1038/s41541-023-00716-9
pmc: PMC10423262
doi:
Types de publication
Journal Article
Langues
eng
Pagination
118Subventions
Organisme : NIAID NIH HHS
ID : R01 AI141534
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM139926
Pays : United States
Commentaires et corrections
Type : UpdateOf
Informations de copyright
© 2023. Springer Nature Limited.
Références
Tsang, T. K. et al. Prior infections and effectiveness of SARS-CoV-2 vaccine in test-negative study: a systematic review and meta-analysis. medRxiv, 2022.2011.2003.22281925, https://doi.org/10.1101/2022.11.03.22281925 (2022).
Chua, H. et al. The use of test-negative controls to monitor vaccine effectiveness: a systematic review of methodology. Epidemiology 31, 43–64 (2020).
doi: 10.1097/EDE.0000000000001116
pubmed: 31609860
pmcid: 6888869
Sullivan, S. G. & Cowling, B. J. "Crude vaccine effectiveness" is a misleading term in test-negative studies of influenza vaccine effectiveness. Epidemiology 26, e60 (2015).
doi: 10.1097/EDE.0000000000000343
pubmed: 26133018
pmcid: 4522193
Sullivan, S. G., Feng, S. & Cowling, B. J. Potential of the test-negative design for measuring influenza vaccine effectiveness: a systematic review. Expert Rev. Vaccines 13, 1571–1591 (2014).
doi: 10.1586/14760584.2014.966695
pubmed: 25348015
pmcid: 4277796
Sullivan, S. G., Tchetgen Tchetgen, E. J. & Cowling, B. J. Theoretical basis of the test-negative study design for assessment of influenza vaccine effectiveness. Am. J. Epidemiol. 184, 345–353 (2016).
doi: 10.1093/aje/kww064
pubmed: 27587721
pmcid: 5013887
Ainslie, K. E. C., Haber, M. & Orenstein, W. A. Bias of influenza vaccine effectiveness estimates from test-negative studies conducted during an influenza pandemic. Vaccine 37, 1987–1993 (2019).
doi: 10.1016/j.vaccine.2019.02.036
pubmed: 30833155
pmcid: 6449847
Foppa, I. M., Haber, M., Ferdinands, J. M. & Shay, D. K. The case test-negative design for studies of the effectiveness of influenza vaccine. Vaccine 31, 3104–3109 (2013).
doi: 10.1016/j.vaccine.2013.04.026
pubmed: 23624093
Jackson, M. L. & Nelson, J. C. The test-negative design for estimating influenza vaccine effectiveness. Vaccine 31, 2165–2168 (2013).
doi: 10.1016/j.vaccine.2013.02.053
pubmed: 23499601
Ainslie, K. E. C., Haber, M. & Orenstein, W. A. Challenges in estimating influenza vaccine effectiveness. Expert Rev. Vaccines 18, 615–628 (2019).
doi: 10.1080/14760584.2019.1622419
pubmed: 31116070
pmcid: 6594904
Lewnard, J. A. et al. Theoretical framework for retrospective studies of the effectiveness of SARS-CoV-2 vaccines. Epidemiology 32, 508–517 (2021).
doi: 10.1097/EDE.0000000000001366
pubmed: 34001753
pmcid: 8168935
Thompson, M. G. et al. Effectiveness of a third dose of mRNA vaccines against COVID-19-associated emergency department and urgent care encounters and hospitalizations among adults during periods of delta and omicron variant predominance - VISION Network, 10 States, August 2021-January 2022. MMWR Morb. Mortal. Wkly. Rep. 71, 139–145 (2022).
doi: 10.15585/mmwr.mm7104e3
pubmed: 35085224
pmcid: 9351525
Stensrud, M. J. Identification of vaccine effects when exposure status is unknown. Epidemiology 34, 216–224 (2023).
doi: 10.1097/EDE.0000000000001573
pubmed: 36696229
pmcid: 9891279
Infante-Rivard, C. & Cusson, A. Reflection on modern methods: selection bias-a review of recent developments. Int. J. Epidemiol. 47, 1714–1722 (2018).
doi: 10.1093/ije/dyy138
pubmed: 29982600
Chadeau-Hyam, M. et al. SARS-CoV-2 infection and vaccine effectiveness in England (REACT-1): a series of cross-sectional random community surveys. Lancet Respir. Med. 10, 355–366 (2022).
doi: 10.1016/S2213-2600(21)00542-7
pubmed: 35085490
pmcid: 8786320
Halloran, M. E., Longini, I. M. Jr. & Struchiner, C. J. Design and interpretation of vaccine field studies. Epidemiol. Rev. 21, 73–88 (1999).
doi: 10.1093/oxfordjournals.epirev.a017990
pubmed: 10520474
Geneletti, S., Mason, A. & Best, N. Adjusting for selection effects in epidemiologic studies: why sensitivity analysis is the only "solution". Epidemiology 22, 36–39 (2011).
doi: 10.1097/EDE.0b013e3182003276
pubmed: 21150353
Geneletti, S., Richardson, S. & Best, N. Adjusting for selection bias in retrospective, case-control studies. Biostatistics 10, 17–31 (2009).
doi: 10.1093/biostatistics/kxn010
pubmed: 18482997
Greenland, S. Basic methods for sensitivity analysis of biases. Int. J. Epidemiol. 25, 1107–1116 (1996).
doi: 10.1093/ije/25.6.1107
pubmed: 9027513
Westreich, D. Berkson’s bias, selection bias, and missing data. Epidemiology 23, 159–164 (2012).
doi: 10.1097/EDE.0b013e31823b6296
pubmed: 22081062
pmcid: 3237868