Modified influenza M1
Journal
NPJ vaccines
ISSN: 2059-0105
Titre abrégé: NPJ Vaccines
Pays: England
ID NLM: 101699863
Informations de publication
Date de publication:
12 Aug 2023
12 Aug 2023
Historique:
received:
19
02
2022
accepted:
11
07
2023
medline:
13
8
2023
pubmed:
13
8
2023
entrez:
12
8
2023
Statut:
epublish
Résumé
CD8 + T cells are promising targets for vaccination against influenza A virus (IAV) infection. Their induction via peptide vaccination is not trivial, because peptides are weakly immunogenic. One strategy to overcome this is by vaccination with chemically enhanced altered peptide ligands (CPLs), which have improved MHC-binding and immunogenicity. It remains unknown how peptide-modification affects the resulting immune response. We studied the effect of CPLs derived from the influenza M1
Identifiants
pubmed: 37573454
doi: 10.1038/s41541-023-00705-y
pii: 10.1038/s41541-023-00705-y
pmc: PMC10423225
doi:
Types de publication
Journal Article
Langues
eng
Pagination
116Informations de copyright
© 2023. Springer Nature Limited.
Références
Padilla-Quirarte, H. O. et al. Protective antibodies against influenza proteins. Front. Immunol. 10, 1677 (2019).
doi: 10.3389/fimmu.2019.01677
pubmed: 31379866
pmcid: 6657620
Wang, Z. et al. Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8(+) T cells. Nat. Commun. 6, 6833 (2015).
doi: 10.1038/ncomms7833
pubmed: 25967273
Wilkinson, T. M. et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 18, 274–280 (2012).
doi: 10.1038/nm.2612
pubmed: 22286307
Sridhar, S. et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 19, 1305–1312 (2013).
doi: 10.1038/nm.3350
pubmed: 24056771
Rosendahl Huber, S. K. et al. Synthetic long peptide influenza vaccine containing conserved T and B cell epitopes reduces viral load in lungs of mice and ferrets. PLoS One 10, e0127969 (2015).
doi: 10.1371/journal.pone.0127969
pubmed: 26046664
pmcid: 4457525
Stephens, A. J., Burgess-Brown, N. A. & Jiang, S. Beyond just peptide antigens: The complex world of peptide-based cancer vaccines. Front. Immunol. 12, 696791 (2021).
doi: 10.3389/fimmu.2021.696791
pubmed: 34276688
pmcid: 8279810
Rosendahl Huber, S. K. et al. Chemical modification of influenza CD8+ T-cell epitopes enhances their immunogenicity regardless of immunodominance. PLoS One 11, e0156462 (2016).
doi: 10.1371/journal.pone.0156462
pubmed: 27333291
pmcid: 4917206
Gianfrani, C., Oseroff, C., Sidney, J., Chesnut, R. W. & Sette, A. Human memory CTL response specific for influenza A virus is broad and multispecific. Hum. Immunol. 61, 438–452 (2000).
doi: 10.1016/S0198-8859(00)00105-1
pubmed: 10773346
Eickhoff, C. S. et al. Highly conserved influenza T cell epitopes induce broadly protective immunity. Vaccine 37, 5371–5381 (2019).
doi: 10.1016/j.vaccine.2019.07.033
pubmed: 31331771
pmcid: 6690779
UniProt, C. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).
doi: 10.1093/nar/gkaa1100
Venturi, V. et al. Methods for comparing the diversity of samples of the T cell receptor repertoire. J. Immunol. Methods 321, 182–195 (2007).
doi: 10.1016/j.jim.2007.01.019
pubmed: 17337271
Denkberg, G., Klechevsky, E. & Reiter, Y. Modification of a tumor-derived peptide at an HLA-A2 anchor residue can alter the conformation of the MHC-peptide complex: probing with TCR-like recombinant antibodies. J. Immunol. 169, 4399–4407 (2002).
doi: 10.4049/jimmunol.169.8.4399
pubmed: 12370373
Holland, C. J. et al. In Silico and structural analyses demonstrate that intrinsic protein motions guide T cell receptor complementarity determining region loop flexibility. Front. Immunol. 9, 674 (2018).
doi: 10.3389/fimmu.2018.00674
pubmed: 29696015
pmcid: 5904202
de Jonge, J. et al. H7N9 live attenuated influenza vaccine is highly immunogenic, prevents virus replication, and protects against severe bronchopneumonia in ferrets. Mol. Ther. 24, 991–1002 (2016).
doi: 10.1038/mt.2016.23
pubmed: 26796670
pmcid: 4881767
Berkhoff, E. G. et al. Fitness costs limit escape from cytotoxic T lymphocytes by influenza A viruses. Vaccine 24, 6594–6596 (2006).
doi: 10.1016/j.vaccine.2006.05.051
pubmed: 16837112
Tan, A. C. et al. The design and proof of concept for a CD8(+) T cell-based vaccine inducing cross-subtype protection against influenza A virus. Immunol. Cell Biol. 91, 96–104 (2013).
doi: 10.1038/icb.2012.54
pubmed: 23146941
Tan, A. C. et al. Precursor frequency and competition dictate the HLA-A2-restricted CD8+ T cell responses to influenza A infection and vaccination in HLA-A2.1 transgenic mice. J. Immunol. 187, 1895–1902 (2011).
doi: 10.4049/jimmunol.1100664
pubmed: 21765016
Sharma, A. K. et al. Class I major histocompatibility complex anchor substitutions alter the conformation of T cell receptor contacts. J. Biol. Chem. 276, 21443–21449 (2001).
doi: 10.1074/jbc.M010791200
pubmed: 11287414
Stewart-Jones, G. B., McMichael, A. J., Bell, J. I., Stuart, D. I. & Jones, E. Y. A structural basis for immunodominant human T cell receptor recognition. Nat. Immunol. 4, 657–663 (2003).
doi: 10.1038/ni942
pubmed: 12796775
Davis, M. M. The problem of plain vanilla peptides. Nat. Immunol. 4, 649–650 (2003).
doi: 10.1038/ni0703-649
pubmed: 12830143
Moss, P. A. et al. Extensive conservation of alpha and beta chains of the human T-cell antigen receptor recognizing HLA-A2 and influenza A matrix peptide. Proc. Natl Acad. Sci. USA 88, 8987–8990 (1991).
doi: 10.1073/pnas.88.20.8987
pubmed: 1833769
pmcid: 52636
Nguyen, T. H. O. et al. Perturbed CD8+ T cell immunity across universal influenza epitopes in the elderly. J. Leukoc. Biol. 103, 321–339 (2017).
doi: 10.1189/jlb.5MA0517-207R
pubmed: 28928269
Gil, A. et al. Narrowing of human influenza A virus-specific T cell receptor alpha and beta repertoires with increasing age. J. Virol. 89, 4102–4116 (2015).
doi: 10.1128/JVI.03020-14
pubmed: 25609818
pmcid: 4442365
Man, S. et al. Synthetic peptides with inadvertent chemical modifications can activate potentially autoreactive T cells. J. Immunol. 207, 1009–1017 (2021).
doi: 10.4049/jimmunol.2000756
pubmed: 34321228
Ekeruche-Makinde, J. et al. T-cell receptor-optimized peptide skewing of the T-cell repertoire can enhance antigen targeting. J. Biol. Chem. 287, 37269–37281 (2012).
doi: 10.1074/jbc.M112.386409
pubmed: 22952231
pmcid: 3481325
Cornberg, M. et al. Narrowed TCR repertoire and viral escape as a consequence of heterologous immunity. J. Clin. Invest. 116, 1443–1456 (2006).
doi: 10.1172/JCI27804
pubmed: 16614754
pmcid: 1435724
Davenport, M. P., Price, D. A. & McMichael, A. J. The T cell repertoire in infection and vaccination: implications for control of persistent viruses. Curr. Opin. Immunol. 19, 294–300 (2007).
doi: 10.1016/j.coi.2007.04.001
pubmed: 17433874
Simonsa, B. C. & Kalamsa, S. A. The potential role of epitope-specific T-cell receptor diversity in the control of HIV replication. Curr Opin. HIV AIDS 2, 177–182 (2007).
Valkenburg, S. A. et al. Molecular basis for universal HLA-A*0201–restricted CD8+ T-cell immunity against influenza viruses. PNAS 113, 4440–4445 (2016).
doi: 10.1073/pnas.1603106113
pubmed: 27036003
pmcid: 4843436
Hoppes, R. et al. Altered peptide ligands revisited: vaccine design through chemically modified HLA-A2-restricted T cell epitopes. J. Immunol. 193, 4803–4813 (2014).
doi: 10.4049/jimmunol.1400800
pubmed: 25311806
pmcid: 4226423
Zhang, J. et al. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).
doi: 10.1093/bioinformatics/btt593
pubmed: 24142950
Gerritsen, B. et al. RTCR: a pipeline for complete and accurate recovery of T cell repertoires from high throughput sequencing data. Bioinformatics 32, 3098–3106 (2016).
doi: 10.1093/bioinformatics/btw339
pubmed: 27324198
pmcid: 5048062
Ramakrishnan, M. A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 5, 85–86 (2016).
doi: 10.5501/wjv.v5.i2.85
pubmed: 27175354
pmcid: 4861875