Modified influenza M1


Journal

NPJ vaccines
ISSN: 2059-0105
Titre abrégé: NPJ Vaccines
Pays: England
ID NLM: 101699863

Informations de publication

Date de publication:
12 Aug 2023
Historique:
received: 19 02 2022
accepted: 11 07 2023
medline: 13 8 2023
pubmed: 13 8 2023
entrez: 12 8 2023
Statut: epublish

Résumé

CD8 + T cells are promising targets for vaccination against influenza A virus (IAV) infection. Their induction via peptide vaccination is not trivial, because peptides are weakly immunogenic. One strategy to overcome this is by vaccination with chemically enhanced altered peptide ligands (CPLs), which have improved MHC-binding and immunogenicity. It remains unknown how peptide-modification affects the resulting immune response. We studied the effect of CPLs derived from the influenza M1

Identifiants

pubmed: 37573454
doi: 10.1038/s41541-023-00705-y
pii: 10.1038/s41541-023-00705-y
pmc: PMC10423225
doi:

Types de publication

Journal Article

Langues

eng

Pagination

116

Informations de copyright

© 2023. Springer Nature Limited.

Références

Padilla-Quirarte, H. O. et al. Protective antibodies against influenza proteins. Front. Immunol. 10, 1677 (2019).
doi: 10.3389/fimmu.2019.01677 pubmed: 31379866 pmcid: 6657620
Wang, Z. et al. Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8(+) T cells. Nat. Commun. 6, 6833 (2015).
doi: 10.1038/ncomms7833 pubmed: 25967273
Wilkinson, T. M. et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 18, 274–280 (2012).
doi: 10.1038/nm.2612 pubmed: 22286307
Sridhar, S. et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 19, 1305–1312 (2013).
doi: 10.1038/nm.3350 pubmed: 24056771
Rosendahl Huber, S. K. et al. Synthetic long peptide influenza vaccine containing conserved T and B cell epitopes reduces viral load in lungs of mice and ferrets. PLoS One 10, e0127969 (2015).
doi: 10.1371/journal.pone.0127969 pubmed: 26046664 pmcid: 4457525
Stephens, A. J., Burgess-Brown, N. A. & Jiang, S. Beyond just peptide antigens: The complex world of peptide-based cancer vaccines. Front. Immunol. 12, 696791 (2021).
doi: 10.3389/fimmu.2021.696791 pubmed: 34276688 pmcid: 8279810
Rosendahl Huber, S. K. et al. Chemical modification of influenza CD8+ T-cell epitopes enhances their immunogenicity regardless of immunodominance. PLoS One 11, e0156462 (2016).
doi: 10.1371/journal.pone.0156462 pubmed: 27333291 pmcid: 4917206
Gianfrani, C., Oseroff, C., Sidney, J., Chesnut, R. W. & Sette, A. Human memory CTL response specific for influenza A virus is broad and multispecific. Hum. Immunol. 61, 438–452 (2000).
doi: 10.1016/S0198-8859(00)00105-1 pubmed: 10773346
Eickhoff, C. S. et al. Highly conserved influenza T cell epitopes induce broadly protective immunity. Vaccine 37, 5371–5381 (2019).
doi: 10.1016/j.vaccine.2019.07.033 pubmed: 31331771 pmcid: 6690779
UniProt, C. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).
doi: 10.1093/nar/gkaa1100
Venturi, V. et al. Methods for comparing the diversity of samples of the T cell receptor repertoire. J. Immunol. Methods 321, 182–195 (2007).
doi: 10.1016/j.jim.2007.01.019 pubmed: 17337271
Denkberg, G., Klechevsky, E. & Reiter, Y. Modification of a tumor-derived peptide at an HLA-A2 anchor residue can alter the conformation of the MHC-peptide complex: probing with TCR-like recombinant antibodies. J. Immunol. 169, 4399–4407 (2002).
doi: 10.4049/jimmunol.169.8.4399 pubmed: 12370373
Holland, C. J. et al. In Silico and structural analyses demonstrate that intrinsic protein motions guide T cell receptor complementarity determining region loop flexibility. Front. Immunol. 9, 674 (2018).
doi: 10.3389/fimmu.2018.00674 pubmed: 29696015 pmcid: 5904202
de Jonge, J. et al. H7N9 live attenuated influenza vaccine is highly immunogenic, prevents virus replication, and protects against severe bronchopneumonia in ferrets. Mol. Ther. 24, 991–1002 (2016).
doi: 10.1038/mt.2016.23 pubmed: 26796670 pmcid: 4881767
Berkhoff, E. G. et al. Fitness costs limit escape from cytotoxic T lymphocytes by influenza A viruses. Vaccine 24, 6594–6596 (2006).
doi: 10.1016/j.vaccine.2006.05.051 pubmed: 16837112
Tan, A. C. et al. The design and proof of concept for a CD8(+) T cell-based vaccine inducing cross-subtype protection against influenza A virus. Immunol. Cell Biol. 91, 96–104 (2013).
doi: 10.1038/icb.2012.54 pubmed: 23146941
Tan, A. C. et al. Precursor frequency and competition dictate the HLA-A2-restricted CD8+ T cell responses to influenza A infection and vaccination in HLA-A2.1 transgenic mice. J. Immunol. 187, 1895–1902 (2011).
doi: 10.4049/jimmunol.1100664 pubmed: 21765016
Sharma, A. K. et al. Class I major histocompatibility complex anchor substitutions alter the conformation of T cell receptor contacts. J. Biol. Chem. 276, 21443–21449 (2001).
doi: 10.1074/jbc.M010791200 pubmed: 11287414
Stewart-Jones, G. B., McMichael, A. J., Bell, J. I., Stuart, D. I. & Jones, E. Y. A structural basis for immunodominant human T cell receptor recognition. Nat. Immunol. 4, 657–663 (2003).
doi: 10.1038/ni942 pubmed: 12796775
Davis, M. M. The problem of plain vanilla peptides. Nat. Immunol. 4, 649–650 (2003).
doi: 10.1038/ni0703-649 pubmed: 12830143
Moss, P. A. et al. Extensive conservation of alpha and beta chains of the human T-cell antigen receptor recognizing HLA-A2 and influenza A matrix peptide. Proc. Natl Acad. Sci. USA 88, 8987–8990 (1991).
doi: 10.1073/pnas.88.20.8987 pubmed: 1833769 pmcid: 52636
Nguyen, T. H. O. et al. Perturbed CD8+ T cell immunity across universal influenza epitopes in the elderly. J. Leukoc. Biol. 103, 321–339 (2017).
doi: 10.1189/jlb.5MA0517-207R pubmed: 28928269
Gil, A. et al. Narrowing of human influenza A virus-specific T cell receptor alpha and beta repertoires with increasing age. J. Virol. 89, 4102–4116 (2015).
doi: 10.1128/JVI.03020-14 pubmed: 25609818 pmcid: 4442365
Man, S. et al. Synthetic peptides with inadvertent chemical modifications can activate potentially autoreactive T cells. J. Immunol. 207, 1009–1017 (2021).
doi: 10.4049/jimmunol.2000756 pubmed: 34321228
Ekeruche-Makinde, J. et al. T-cell receptor-optimized peptide skewing of the T-cell repertoire can enhance antigen targeting. J. Biol. Chem. 287, 37269–37281 (2012).
doi: 10.1074/jbc.M112.386409 pubmed: 22952231 pmcid: 3481325
Cornberg, M. et al. Narrowed TCR repertoire and viral escape as a consequence of heterologous immunity. J. Clin. Invest. 116, 1443–1456 (2006).
doi: 10.1172/JCI27804 pubmed: 16614754 pmcid: 1435724
Davenport, M. P., Price, D. A. & McMichael, A. J. The T cell repertoire in infection and vaccination: implications for control of persistent viruses. Curr. Opin. Immunol. 19, 294–300 (2007).
doi: 10.1016/j.coi.2007.04.001 pubmed: 17433874
Simonsa, B. C. & Kalamsa, S. A. The potential role of epitope-specific T-cell receptor diversity in the control of HIV replication. Curr Opin. HIV AIDS 2, 177–182 (2007).
Valkenburg, S. A. et al. Molecular basis for universal HLA-A*0201–restricted CD8+ T-cell immunity against influenza viruses. PNAS 113, 4440–4445 (2016).
doi: 10.1073/pnas.1603106113 pubmed: 27036003 pmcid: 4843436
Hoppes, R. et al. Altered peptide ligands revisited: vaccine design through chemically modified HLA-A2-restricted T cell epitopes. J. Immunol. 193, 4803–4813 (2014).
doi: 10.4049/jimmunol.1400800 pubmed: 25311806 pmcid: 4226423
Zhang, J. et al. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).
doi: 10.1093/bioinformatics/btt593 pubmed: 24142950
Gerritsen, B. et al. RTCR: a pipeline for complete and accurate recovery of T cell repertoires from high throughput sequencing data. Bioinformatics 32, 3098–3106 (2016).
doi: 10.1093/bioinformatics/btw339 pubmed: 27324198 pmcid: 5048062
Ramakrishnan, M. A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 5, 85–86 (2016).
doi: 10.5501/wjv.v5.i2.85 pubmed: 27175354 pmcid: 4861875

Auteurs

Josien Lanfermeijer (J)

Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.

Koen van de Ven (K)

Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.

Harry van Dijken (H)

Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.

Marion Hendriks (M)

Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.

Cami M P Talavera Ormeño (CMP)

Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands.

Femke de Heij (F)

Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.

Paul Roholl (P)

Microscope Consultancy, Weesp, Netherlands.

José A M Borghans (JAM)

Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.

Debbie van Baarle (D)

Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.
Virology & Immunology Research. Dept Medical Microbiology and Infection prevention, University Medical Center Groningen, Groningen, the Netherlands.

Jørgen de Jonge (J)

Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands. Jorgen.de.jonge@rivm.nl.

Classifications MeSH