Soilization utilization of solid waste: Ecological regulation of phosphorus tailings-based soil with physicochemical improvement and Bacillus_cereus-addition.

Available phosphorus Expansion application PSB Phosphorus tailings Soil fertility

Journal

Environmental research
ISSN: 1096-0953
Titre abrégé: Environ Res
Pays: Netherlands
ID NLM: 0147621

Informations de publication

Date de publication:
01 Nov 2023
Historique:
received: 18 07 2023
revised: 04 08 2023
accepted: 07 08 2023
pubmed: 14 8 2023
medline: 14 8 2023
entrez: 13 8 2023
Statut: ppublish

Résumé

Extraction and utilization of effective phosphorus from solid waste have been an important approach for alleviating phosphorus resource shortage. The extraction of available phosphorus by microbial method with low cost, mild conditions and simple process has been drawing attention from the majority of research scholars. However, relevant studies on special microbial communities for effective phosphorus extraction from solid waste are less. In this work,a functional Bacillus_cereus strain screened from phosphate tailings, phosphate ore and forest rhizosphere soil was inoculated into phosphate tailings (PT), modified phosphate tailings (IS) and highland red soil (SS). Compared with SS, the water-holding properties, fertility, leaching toxicity and microbial community diversity of PT and IS with and without bacteria were analyzed. PT+, SS+ and IS+ (after adding bacteria to PT, SS and IS) showed moderately alkaline pH, and the available phosphorus content enhanced by 31.73%, 20.05% and 39.41% respectively. The leaching toxicity phosphate of PT+ and IS + decreased by 4.89 mg/kg and 2.61 mg/kg respectively, while that of SS + increased by 5.45 mg/kg, indicating differences in the phosphorus solubilization mechanism of Bacillus_cereus for different soils. Furthermore, the modification and bacteria treatment improved the relative abundance of Pedobacter, Alcaligenaceae and Pseudomonas, thus enhancing the phosphorus solubility of the PT bacterial community. This work may achieve efficient utilization and ecological restoration of phosphorus tailings-based soil and contribute to long-term sustainable agricultural development.

Identifiants

pubmed: 37574102
pii: S0013-9351(23)01660-2
doi: 10.1016/j.envres.2023.116856
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

116856

Informations de copyright

Copyright © 2023 Elsevier Inc. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Caiyue Jin (C)

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.

Jieqian Yang (J)

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.

Bangjin Chen (B)

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.

Guangfei Qu (G)

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China. Electronic address: qgflab@sina.com.

Hailin Li (H)

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.

Fenghui Wu (F)

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.

Xinxin Liu (X)

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.

Ye Liu (Y)

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.

Lingrui Kuang (L)

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.

Junyan Li (J)

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.

Classifications MeSH