Mung bean as a potent emerging functional food having anticancer therapeutic potential: Mechanistic insight and recent updates.

anticancer antiproliferative cancer functional food mung bean therapeutic

Journal

Biotechnology and applied biochemistry
ISSN: 1470-8744
Titre abrégé: Biotechnol Appl Biochem
Pays: United States
ID NLM: 8609465

Informations de publication

Date de publication:
Dec 2023
Historique:
received: 16 03 2023
accepted: 02 08 2023
pubmed: 14 8 2023
medline: 14 8 2023
entrez: 13 8 2023
Statut: ppublish

Résumé

Cancer is still a major challenge for humans. In recent years, researchers have focused on plant-based metabolites as a safe, efficient, alternative or combinatorial, as well as cost-effective preventive strategy against carcinogenesis. Mung bean is an important nutritious legume, and known for providing various health benefits due to various bioactive phytochemicals and easily digestible proteins. Regular intake of mung bean helps to regulate metabolism by affecting the growth and survival of good microbes in the host gut. Mung bean has also been reported to have anti-inflammatory, antioxidant, antiproliferative, and immunomodulatory properties. These properties may possess the preventive potential of mung bean against carcinogenesis. Bibliographic databases for peer-reviewed research literature were searched through a structured conceptual approach using focused review questions on mung beans, anticancer, therapeutics, and functional foods along with inclusion/exclusion criteria. For the appraisal of the quality of retrieved articles, standard tools were employed. A deductive qualitative content analysis methodology further led us to analyze outcomes of the research and review articles. The present review provides recent updates on the anticancer potential of mung bean and the possible mechanism of action thereof to prevent carcinogenesis and metastasis. Extensive research on the active metabolites and mechanisms of action is required to establish the anticancer potential of mung bean. Keeping the above facts in view, mung bean should be investigated for its bioactive compounds, to be considered as functional food of the future.

Identifiants

pubmed: 37574464
doi: 10.1002/bab.2505
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

2002-2016

Informations de copyright

© 2023 International Union of Biochemistry and Molecular Biology, Inc.

Références

Parohan M, Sadeghi A, Khatibi SR, Nasiri M, Milajerdi A, Khodadost M, et al. Dietary total antioxidant capacity and risk of cancer: a systematic review and meta-analysis on observational studies. Crit Rev Oncol Hematol. 2019;138:70-86.
Grosso G, Bella F, Godos J, Sciacca S, Del Rio D, Ray S, et al. Possible role of diet in cancer: systematic review and multiple meta-analyses of dietary patterns, lifestyle factors, and cancer risk. Nutr Rev. 2017;75:405-19.
Kabré WJD, Dah-Nouvlessounon D, Hama F, Kohonou NA, Sina H, Senou M, et al. Anti-Inflammatory and anti-colon cancer activities of mung bean grown in Burkina Faso. Evid Based Complement Alternat Med. 2022;2022:7873572.
Sehrawat N, Yadav M, Kumar S, Upadhyay SK, Singh M, Sharma AK. Review on health promoting biological activities of mung bean: a potent functional food of medicinal importance. Plant Arch. 2020;20:2969-75.
Sehrawat N, Yadav M, Sharma AK, Kumar S, Singh M, Kumar V, et al. Mung bean (Vigna radiata L. Wilczek) as functional food, agronomic importance and breeding approach for development of climate resilience: current status and future perspectives. Asian J Biol Life Sci. 2021;10:87.
Han D, Chung M, Park Y. Association of dietary total antioxidant capacity with cancer recurrence and mortality among breast cancer survivors: a prospective cohort study. Nutr Cancer. 2022;74(9):3253-62.
Sehrawat N, Devi S, Devi A, Yadav M. Anti-diabetic and anticancerous potential of citrus flavonoid naringin: a review. Med Plants Int J Phytomedicines Relat Ind. 2018;10:171-5.
Butnariu M, Quispe C, Herrera-Bravo J, Helon P, Kukula-Koch W, López V, et al. The effects of thymoquinone on pancreatic cancer: evidence from preclinical studies. Biomed Pharmacother. 2022;153:113364. https://doi.org/10.1016/j.biopha.2022.113364
Buathong N, Chandarajoti K, Sae-tan S. Anti-inflammatory potential of mung bean seed coat water extract in lipopolysaccharide-induced 3T3-L1 adipocytes. Agric Nat Resour. 2021;55:777-86.
Gupta N, Srivastava N, Bhagyawant SS. Vicilin-a major storage protein of mung bean exhibits antioxidative potential, antiproliferative effects and ACE inhibitory activity. PLoS One. 2018;13:e0191265.
Umar A, Khan MT, Bukhari S, Sardar R, Naheed K, Younas H, et al. Antioxidant activity and total phenolic contents of dried and germinated legumes. Research Square; 2022.
Rai AK, Jeyaram K. Health benefits of functional proteins in fermented foods. In: Health benefits of fermented foods and beverages. CRC Press; 2015. p. 455-74.
Xu X, Zhang J, Zhang Y, Qi H, Wang P. Associations between dietary fiber intake and mortality from all causes, cardiovascular disease and cancer: a prospective study. J Transl Med. 2022;20:344.
Sharma V, Sharma N, Sheikh I, Kumar V, Sehrawat N, Yadav M, et al. Probiotics and prebiotics having broad spectrum anticancer therapeutic potential: recent trends and future perspectives. Curr Pharmacol Rep. 2021;7:67-79.
Butnariu M, Fratantonio D, Herrera-Bravo J, Sukreet S, Martorell M, Ekaterina Robertovna G. Plant-food-derived bioactives in managing hypertension: from current findings to upcoming effective pharmacotherapies. Curr Top Med Chem. 2023;23(8):589-617. https://doi.org/10.2174/1568026623666230106144509
Yang Q-Q, Ge Y-Y, Gunaratne A, Kong K-W, Li H-B, Gul K, et al. Phenolic profiles, antioxidant activities, and antiproliferative activities of different mung bean (Vigna radiata) varieties from Sri Lanka. Food Biosci. 2020;37:100705.
Sharma VR, Singh M, Kumar V, Yadav M, Sehrawat N, Sharma DK, et al. Microbiome dysbiosis in cancer: exploring therapeutic strategies to counter the disease. Semin Cancer Biol. 2021;70:61-70.
Chen Z, Wang J, Liu W, Chen H. Physicochemical characterization, antioxidant and anticancer activities of proteins from four legume species. J Food Sci Technol. 2017;54:964-72.
González-Montoya M, Cano-Sampedro E, Mora-Escobedo R. Bioactive peptides from legumes as anticancer therapeutic agents. Int J Cancer Clin Res. 2017;4:81.
Kartikeyan A, Vasudevan V, Peter AJ, Krishnan N, Velmurugan D, Velusamy P, et al. Effect of incubation period on the glycosylated protein content in germinated and ungerminated seeds of mung bean (Vigna radiata (L.) Wilczek). Int J Biol Macromol. 2022;217:633-51.
Sehrawat N, Yadav M. Suggesting the enhanced production of mung bean in future to assure nutritive food supply to poor population in situations similar to covid-19 lockdown in developing countries. J Bio Inno. 2020;9:621-4.
Wang F, Huang L, Yuan X, Zhang X, Guo L, Xue C, et al. Nutritional, phytochemical and antioxidant properties of 24 mung bean (Vigna radiata L.) genotypes. Food Prod Process Nutr. 2021;3:28.
Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X, et al. Mung bean (Vigna radiata L.): bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients. 2019;11(6):1238. https://doi.org/10.3390/nu11061238
Babaei F, Moa A, zad ZD, Mirzababaei M, Hosseinzadeh H, Nassiri-Asl M. Review of the effects of vitexin in oxidative stress-related diseases. Food Sci. Nutr. 2020;8:2569-80.
Butnariu M, Quispe C, Herrera-Bravo J, Fernández-Ochoa A, Emamzadeh-Yazdi S, Adetunji CO, et al. A review on tradescantia: phytochemical constituents, biological activities and health-promoting effects. Front Biosci (Landmark Ed). 2022;27(6):197. https://doi.org/10.31083/j.fbl2706197
Butnariu M, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Singh L, Aborehab NM, et al. The pharmacological activities of Crocus sativus L.: a review based on the mechanisms and therapeutic opportunities of its phytoconstituents. Oxid Med Cell Longev. 2022;2022:8214821. https://doi.org/10.1155/2022/8214821
Butnariu M, Quispe C, Herrera-Bravo J, Pentea M, Sarac I, Küşümler AS, et al. Papaver plants: current insights on phytochemical and nutritional composition along with biotechnological applications. Oxid Med Cell Longev. 2022;2022:2041769. https://doi.org/10.1155/2022/2041769
Sawa T, Nakao M, Akaike T, Ono K, Maeda H. Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: implications for the anti-tumor-promoter effect of vegetables. J Agric Food Chem. 1999;47:397-402.
Xu WH, Dai Q, Xiang YB, Zhao GM, Ruan ZX, Cheng JR, et al. Nutritional factors in relation to endometrial cancer: a report from a population-based case-control study in Shanghai, China. Int J Cancer. 2007;120:1776-81.
Fernandez-Orozco R, Frias J, Zielinski H, Piskula MK, Kozlowska H, Vidal-Valverde C. Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv. emmerald, Glycine max cv. jutro and Glycine max cv. merit. Food Chem. 2008;111:622-30.
Kang JX, Liu J, Wang J, He C, Li FP. The extract of huanglian, a medicinal herb, induces cell growth arrest and apoptosis by upregulation of interferon-β and TNF-α in human breast cancer cells. Carcinogenesis. 2005;26:1934-9.
Bartee E, McFadden G. Human cancer cells have specifically lost the ability to induce the synergistic state caused by tumor necrosis factor plus interferon-β. Cytokine. 2009;47:199-205.
Brierley MM, Fish EN. IFN-α/β receptor interactions to biologic outcomes: understanding the circuitry. J Interferon Cytokine Res. 2002;22:835-45.
Ray S, Maunsell JH. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 2011;9:e1000610.
Yu W, Jia L, Park SK, Li J, Gopalan A, Simmons-Menchaca M, et al. Anticancer actions of natural and synthetic vitamin E forms: rRR-α-tocopherol blocks the anticancer actions of γ-tocopherol. Mol Nutr Food Res. 2009;53:1573-81.
Swanton C. Cell-cycle targeted therapies. Lancet Oncol. 2004;5:27-36.
Hafidh RR, Abdulamir AS, Bakar FA, Jalilian FA, Abas F, Sekawi Z. Novel molecular, cytotoxical, and immunological study on promising and selective anticancer activity of mung bean sprouts. BMC Complement Altern Med. 2012;12:208. https://doi.org/10.1186/1472-6882-12-208
Weng M-S, Liao C-H, Chen C-N, Wu C-L, Lin J-K. Propolin H from Taiwanese propolis induces G1 arrest in human lung carcinoma cells. J Agric Food Chem. 2007;55:5289-98.
Yagura T, Motomiya T, Ito M, Honda G, Iida A, Kiuchi F, et al. Anticarcinogenic compounds in the Uzbek medicinal plant, Helichrysum maracandicum. J Nat Med. 2008;62:174-8.
Sehrawat N, Yadav M, Singh M, Kumar V, Sharma VR, Sharma AK. Probiotics in microbiome ecological balance providing a therapeutic window against cancer. In: Seminars in cancer biology. Vol. 70. Elsevier; 2021. p. 24-36.
Chia J-S, Du J-L, Wu M-S, Hsu W-B, Chiang C-P, Sun A, et al. Fermentation product of soybean, black bean, and green bean mixture induces apoptosis in a wide variety of cancer cells. Integr Cancer Ther. 2013;12:248-56.
Huang Q, Zhu C-l, Liu C-h, Xie F, Zhu K, Hu S-y. Gamma-aminobutyric acid binds to GABAb receptor to inhibit cholangiocarcinoma cells growth via the JAK/STAT3 pathway. Dig Dis Sci. 2013;58:734-43.
Wongekalak L-o, Sakulsom P, Jirasripongpun K, Hongsprabhas P. Potential use of antioxidative mung bean protein hydrolysate as an anticancer Asiatic acid carrier. Food Res Int. 2011;44:812-7.
Aghajanpour M, Nazer MR, Obeidavi Z, Akbari M, Ezati P, Kor NM. Functional foods and their role in cancer prevention and health promotion: a comprehensive review. Am J Cancer Res. 2017;7:740.
Ali NM, Mohd Yusof H, Yeap S-K, Ho W-Y, Beh B-K, Long K, et al. Anti-inflammatory and antinociceptive activities of untreated, germinated, and fermented mung bean aqueous extract. Evid Based Complement Alternat Med. 2014;2014:350507.
Soufli I, Toumi R, Rafa H, Touil-Boukoffa C. Overview of cytokines and nitric oxide involvement in immuno-pathogenesis of inflammatory bowel diseases. World J Gastrointest Pharmacol Ther. 2016;7:353.
Martinez-Villaluenga C, Peñas E, Frias J. Bioactive peptides in fermented foods: production and evidence for health effects. In: Fermented foods in health and disease prevention. Elsevier; 2017. p. 23-47.
Hashiguchi A, Hitachi K, Zhu W, Tian J, Tsuchida K, Komatsu S. Mung bean (Vigna radiata (L.)) coat extract modulates macrophage functions to enhance antigen presentation: a proteomic study. J Proteomics. 2017;161:26-37.
Lee S-J, Lee JH, Lee H-H, Lee S, Kim SH, Chun T, et al. Effect of mung bean ethanol extract on pro-inflammatory cytokines in LPS stimulated macrophages. Food Sci Biotechnol. 2011;20:519-24.
Luo J, Cai W, Wu T, Xu B. Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chem. 2016;201:350-60.
Venkateshwarlu E, Reddy KP, Dilip D. Potential of Vigna radiata (L.) sprouts in the management of inflammation and arthritis in rats: possible biochemical alterations. Indian J Exp Biol. 2016;54:37-43.
Ali NM, Yeap SK, Yusof HM, Beh BK, Ho WY, Koh SP, et al. Comparison of free amino acids, antioxidants, soluble phenolic acids, cytotoxicity and immunomodulation of fermented mung bean and soybean. J Sci Food Agric. 2016;96:1648-58.
Mohd Ali N, Mohd Yusof H, Long K, Yeap SK, Ho WY, Beh BK, et al. Antioxidant and hepatoprotective effect of aqueous extract of germinated and fermented mung bean on ethanol-mediated liver damage. Biomed Res Int. 2013;2013:693613.
Yeap SK, Beh BK, Ho WY, Mohd Yusof H, Mohamad NE, Ali NM, et al. In vivo antioxidant and hypolipidemic effects of fermented mung bean on hypercholesterolemic mice. Evid Based Complement Alternat Med. 2015;2015:508029.
Moloney JN, Cotter TG. ROS signalling in the biology of cancer. In: Seminars in cell & developmental biology. Vol. 80. Elsevier; 2018. p. 50-64.
Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett. 2017;387:95-105.
Xue Z, Wang C, Zhai L, Yu W, Chang H, Kou X, et al. Bioactive compounds and antioxidant activity of mung bean (Vigna radiata L.), soybean (Glycine max L.) and black bean (Phaseolus vulgaris L.) during the germination process. Czech J Food Sci. 2016;34:68-78.
Yeap SK, Mohd Yusof H, Mohamad NE, Beh BK, Ho WY, Ali NM, et al. In vivo immunomodulation and lipid peroxidation activities contributed to chemoprevention effects of fermented mung bean against breast cancer. Evid Based Complement Alternat Med. 2013;2013:708464.
Werner GH, Jollès P. Immunostimulating agents: what next? A review of their present and potential medical applications. Eur J Biochem. 1996;242:1-19. https://doi.org/10.1111/j.1432-1033.1996.0001r.x
Kobayashi H, Nagasawa T, Aramaki M, Mahanonda R, Ishikawa I. Individual diversities in interferon gamma production by human peripheral blood mononuclear cells stimulated with periodontopathic bacteria. J Periodontal Res. 2000;35:319-28.
Wu S-J, Wang J-S, Lin C-C, Chang C-H. Evaluation of hepatoprotective activity of legumes. Phytomedicine. 2001;8:213-9.
Huang J-p, Zhang MM, Holman CDAJ, M Xing Xie MD. Dietary carotenoids and risk of breast cancer in Chinese women. Asia Pac J Clin Nutr. 2007;16:437.
He M, Min J-W, Kong W-L, He X-H, Li J-X, Peng B-W. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia. 2016;115:74-85.
Ninfali P, Antonini E, Frati A, Scarpa ES. C-glycosyl flavonoids from Beta vulgaris cicla and betalains from Beta vulgaris rubra: antioxidant, anticancer and antiinflammatory activities-a review. Phytother Res. 2017;31:871-84.
Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis - the p53 network. J Cell Sci. 2003;116:4077-85.
Saito M, Korsmeyer SJ, Schlesinger PH. BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol. 2000;2:553-5.
Moneo V, Guijarro MdV, Link W, Carnero A. Overexpression of cyclin D1 inhibits TNF-induced growth arrest. J Cell Biochem. 2003;89:484-99.
Li Z, Zhao C, Li Z, Zhao Y, Shan S, Shi T, et al. Reconstructed mung bean trypsin inhibitor targeting cell surface GRP78 induces apoptosis and inhibits tumor growth in colorectal cancer. Int J Biochem Cell Biol. 2014;47:68-75.
Dormond O, Lejeune FJ, Ruegg C. Modulation of cdk2, cyclin D1, p16INK4a, p21WAF and p27Kip1 expression in endothelial cells by TNF/IFN gamma. Anticancer Res. 2002;22:3159-63.
Bhardwaj M, Paul S, Jakhar R, Khan I, Kang JI, Kim HM, et al. Vitexin confers HSF-1 mediated autophagic cell death by activating JNK and ApoL1 in colorectal carcinoma cells. Oncotarget. 2017;8:112426.
Liu X, Jiang Q, Liu H, Luo S. Vitexin induces apoptosis through mitochondrial pathway and PI3K/Akt/mTOR signaling in human non-small cell lung cancer A549 cells. Biol Res. 2019;52:7.
Sarkar MK, Mahapatra SK, Vadivel V. Oxidative stress mediated cytotoxicity in leukemia cells induced by active phyto-constituents isolated from traditional herbal drugs of West Bengal. J Ethnopharmacol. 2020;251:112527.
Wang W, Cheng H, Gu X, Yin X. The natural flavonoid glycoside vitexin displays preclinical antitumor activity by suppressing NF-κB signaling in nasopharyngeal carcinoma. Onco Targets Ther. 2019;12:4461.
Kapravelou G, Martínez R, Perazzoli G, Sánchez González C, Llopis J, Cantarero S, et al. Germination improves the polyphenolic profile and functional value of mung bean (Vigna radiata L.). Antioxidants. 2020;9:746.
Zhang X, Shang P, Qin F, Zhou Q, Gao B, Huang H, et al. Chemical composition and antioxidative and anti-inflammatory properties of ten commercial mung bean samples. LWT - Food Sci Technol. 2013;54:171-8.

Auteurs

Nirmala Sehrawat (N)

Department of Bio-Sciences and Technology, M.M.E.C., Maharishi Markandeshwar (deemed to be University), Mullana, Ambala, Haryana, India.

Mukesh Yadav (M)

Department of Bio-Sciences and Technology, M.M.E.C., Maharishi Markandeshwar (deemed to be University), Mullana, Ambala, Haryana, India.

Sunil Kumar (S)

Department of Microbiology, Faculty of Bio-medical Sciences, Kampala International University, Kampala, Uganda.

Ashwanti Devi (A)

Department of Bio-Sciences and Technology, M.M.E.C., Maharishi Markandeshwar (deemed to be University), Mullana, Ambala, Haryana, India.

Rajbir Singh (R)

Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Haryana, India.

Varruchi Sharma (V)

Department of Biotechnology & Bioinformatics, Sri Guru Gobind Singh College, Chandigarh, India.

Kuldeep Dhama (K)

Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India.

Jose M Lorenzo (JM)

Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spain.
Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, Universidade de Vigo, Vigo, Ourense, Spain.

Anil Kumar Sharma (AK)

Department of Bio-Sciences and Technology, M.M.E.C., Maharishi Markandeshwar (deemed to be University), Mullana, Ambala, Haryana, India.

Classifications MeSH