Effect of food and polymorphisms in SLCO2B1, CYP3A4 and UGT1A4 on pharmacokinetics of abiraterone and its metabolites in Chinese volunteers.

SLCO2B1 abiraterone pharmacokinetics polymorphism

Journal

British journal of clinical pharmacology
ISSN: 1365-2125
Titre abrégé: Br J Clin Pharmacol
Pays: England
ID NLM: 7503323

Informations de publication

Date de publication:
13 Aug 2023
Historique:
revised: 03 07 2023
received: 09 10 2022
accepted: 05 08 2023
pubmed: 14 8 2023
medline: 14 8 2023
entrez: 14 8 2023
Statut: aheadofprint

Résumé

Abiraterone acetate, a prodrug of abiraterone (ABI), provides an efficient therapeutic option for metastatic castration-resistant prostate cancer patients. ABI undergoes extensive metabolism in vivo and is transformed into active metabolites Δ In this study, 81 healthy Chinese subjects were enrolled and divided into 2 groups for fasted (n = 45) and fed (n = 36) studies. Plasma samples were collected after administering a 250 mg abiraterone acetate tablet followed by liquid chromatography-tandem mass spectrometry analysis. Genotyping was performed on a MassARRAY system. The association between SLCO2B1, CYP3A4, UGT1A4 genotype and pharmacokinetic parameters of ABI and its metabolites was assessed. Food effect study demonstrated high fat meal remarkedly increased systemic exposure of ABI and its metabolites. The geometric mean ratio and 90% confidence interval of area under the plasma concentration-time curve from time 0 to the time of the last quantifiable concentration (AUC Polymorphisms in SLCO2B1 were significantly related to the pharmacokinetic variability of ABI and its metabolites under both fasted and fed conditions.

Identifiants

pubmed: 37574850
doi: 10.1111/bcp.15883
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Hubei Province Major Basic Research Development Program
ID : 2020BCB016
Organisme : Hubei Province Major Basic Research Development Program
ID : 2020BCB045

Informations de copyright

© 2023 British Pharmacological Society.

Références

Yin L, Hu Q. CYP17 inhibitors-abiraterone, C17,20-lyase inhibitors and multi-targeting agents. Nat Rev Urol. 2014;11(1):32-42. doi:10.1038/nrurol.2013.274
Ryan CJ, Smith MR, de Bono JS, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368(2):138-148. doi:10.1056/NEJMoa1209096
Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15(12):701-711. doi:10.1038/nrc4016
Ingrosso G, Detti B, Scartoni D, et al. Current therapeutic options in metastatic castration-resistant prostate cancer. Semin Oncol. 2018;45(5-6):303-315. doi:10.1053/j.seminoncol.2018.10.001
Han CS, Patel R, Kim IY. Pharmacokinetics, pharmacodynamics and clinical efficacy of abiraterone acetate for treating metastatic castration-resistant prostate cancer. Expert Opin Drug Metab Toxicol. 2015;11(6):967-975. doi:10.1517/17425255.2015.1041918
Marbury T, Lawitz E, Stonerock R, et al. Single-dose pharmacokinetic studies of abiraterone acetate in men with hepatic or renal impairment. J Clin Pharmacol. 2014;54(7):732-741. doi:10.1002/jcph.253
Li Z, Bishop AC, Alyamani M, et al. Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature. 2015;523(7560):347-351. doi:10.1038/nature14406
Li Z, Alyamani M, Li J, et al. Redirecting abiraterone metabolism to fine-tune prostate cancer anti-androgen therapy. Nature. 2016;533(7604):547-551. doi:10.1038/nature17954
Acharya M, Gonzalez M, Mannens G, et al. A phase I, open-label, single-dose, mass balance study of 14C-labeled abiraterone acetate in healthy male subjects. Xenobiotica. 2013;43(4):379-389. doi:10.3109/00498254.2012.721022
Caron P, Turcotte V, Levesque E, Guillemette C. An LC-MS/MS method for quantification of abiraterone, its active metabolites D(4)-abiraterone (D4A) and 5 alpha-abiraterone, and their inactive glucuronide derivatives. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1104:249-255. doi:10.1016/j.jchromb.2018.12.003
Vaillancourt J, Turcotte V, Caron P, et al. Glucuronidation of abiraterone and its pharmacologically active metabolites by UGT1A4, influence of polymorphic variants and their potential as inhibitors of steroid glucuronidation. Drug Metab Dispos. 2020;48(2):75-84. doi:10.1124/dmd.119.088229
Benoist GE, Hendriks RJ, Mulders PF, et al. Pharmacokinetic aspects of the two novel oral drugs used for metastatic castration-resistant prostate cancer: abiraterone acetate and enzalutamide. Clin Pharmacokinet. 2016;55(11):1369-1380. doi:10.1007/s40262-016-0403-6
Mostaghel EA, Cho E, Zhang A, et al. Association of tissue abiraterone levels and SLCO genotype with intraprostatic steroids and pathologic response in men with high-risk localized prostate cancer. Clin Cancer Res. 2017;23(16):4592-4601. doi:10.1158/1078-0432.CCR-16-2245
Hagenbuch B, Stieger B. The SLCO (former SLC21) superfamily of transporters. Mol Aspects Med. 2013;34(2-3):396-412. doi:10.1016/j.mam.2012.10.009
Cho E, Montgomery RB, Mostaghel EA. Minireview: SLCO and ABC transporters: a role for steroid transport in prostate cancer progression. Endocrinology. 2014;155(11):4124-4132. doi:10.1210/en.2014-1337
European Medicines Agency. European Public Assessment Report (EPAR): Zytiga (Abiraterone Acetate). European Medicines Agency.
Liu M, Shi H, Yan J, et al. Gene polymorphism-related differences in the outcomes of abiraterone for prostate cancer: a systematic overview. Am J Cancer Res. 2021;11(5):1873-1894.
Hahn AW, Gill DM, Poole A, et al. Germline variant in SLCO2B1 and response to abiraterone acetate plus prednisone (AA) in new-onset metastatic castration-resistant prostate cancer (mCRPC). Mol Cancer Ther. 2019;18(3):726-729. doi:10.1158/1535-7163.MCT-18-0739
Giacinti S, Bassanelli M, Roberto M, Strigari L, De Nunzio C, Aschelter AM. Polymorphisms of the androgen transporting gene SLCO2B1 and response to abiraterone acetate in mCRPC patients. J Clin Oncol. 2017;35(6_suppl):174. doi:10.1200/JCO.2017.35.6_suppl.174
Hu Y, Wu J, Jiang X, et al. Simultaneous determination of abiraterone and its five metabolites in human plasma by LC-MS/MS: application to pharmacokinetic study in healthy Chinese subjects. J Pharm Biomed Anal. 2022;217:114826. doi:10.1016/j.jpba.2022.114826
Li CY, Ding YH, Yang DM, et al. Evaluation of reference-scaled average bioequivalence of two oral formulations of abiraterone acetate in healthy Chinese subjects. Int J Clin Pharmacol Ther. 2018;56(11):562-570. doi:10.5414/CP203295
Inoue K, Shishido A, Vaccaro N, et al. Pharmacokinetics of abiraterone in healthy Japanese men: dose-proportionality and effect of food timing. Cancer Chemother Pharmacol. 2015;75(1):49-58. doi:10.1007/s00280-014-2616-4
Chi KN, Spratlin J, Kollmannsberger C, et al. Food effects on abiraterone pharmacokinetics in healthy subjects and patients with metastatic castration-resistant prostate cancer. Clin Pharmacokinet. 2015;55(12):1406-1414. doi:10.1002/jcph.564
Geboers S, Stappaerts J, Mols R, et al. The effect of food on the intraluminal behavior of abiraterone acetate in man. J Pharm Sci. 2016;105(9):2974-2981. doi:10.1016/j.xphs.2016.03.008
Arasaratnam M, Crumbaker M, Bhatnagar A, McKay MJ, Molloy MP, Gurney H. Inter- and intra-patient variability in pharmacokinetics of abiraterone acetate in metastatic prostate cancer. Cancer Chemother Pharmacol. 2019;84(1):139-146. doi:10.1007/s00280-019-03862-x
Jordán T, Basa-Dénes O, Angi R, et al. Dose finding and food effect studies of a novel abiraterone acetate formulation for oral suspension in comparison to a reference formulation in healthy male subjects. Pharmaceutics. 2021;13(12):2171. doi:10.3390/pharmaceutics13122171
Feng Z, Liu Y, Kuang Y, et al. Open-label, phase I, pharmacokinetic studies in healthy chinese subjects to evaluate the bioequivalence and food effect of a novel formulation of abiraterone acetate tablets. Drug des Devel Ther. 2022;16:3-12. doi:10.2147/DDDT.S339305
Wang J, Yang G, Huang J, et al. Pharmacokinetics and bioequivalence of abiraterone acetate tablets in healthy Chinese volunteers. Chin J Clin Pharmacol. 2018;34:1989-1992.
Alyamani M, Emamekhoo H, Park S, et al. HSD3B1(1245A>C) variant regulates dueling abiraterone metabolite effects in prostate cancer. J Clin Invest. 2018;128(8):3333-3340. doi:10.1172/JCI98319
Bernard A, Vaccaro N, Acharya M, et al. Impact on abiraterone pharmacokinetics and safety: open-label drug-drug interaction studies with ketoconazole and rifampicin. Clin Pharmacol Drug Dev. 2015;4(1):63-73. doi:10.1002/cpdd.132
Singh BN. Effects of food on clinical pharmacokinetics. Clin Pharmacokinet. 1999;37(3):213-255. doi:10.2165/00003088-199937030-00003
Briguglio M, Hrelia S, Malaguti M, et al. Food bioactive compounds and their interference in drug pharmacokinetic/pharmacodynamic profiles. Pharmaceutics. 2018;10(4):277. doi:10.3390/pharmaceutics10040277
Rodriguez-Fragoso L, Martinez-Arismendi JL, Orozco-Bustos D, Reyes-Esparza J, Torres E, Burchiel SW. Potential risks resulting from fruit/vegetable-drug interactions: effects on drug-metabolizing enzymes and drug transporters. J Food Sci. 2011;76(4):R112-R124. doi:10.1111/j.1750-3841.2011.02155.x
Armstrong RA, Eperjesi F, Gilmartin B. The application of analysis of variance (ANOVA) to different experimental designs in optometry. Ophthalmic Physiol Opt. 2002;22(3):248-256. doi:10.1046/j.1475-1313.2002.00020.x
Medwid S, Li MMJ, Knauer MJ, et al. Fexofenadine and rosuvastatin pharmacokinetics in mice with targeted disruption of organic anion transporting polypeptide 2B1. Drug Metab Dispos. 2019;47(8):832-842. doi:10.1124/dmd.119.087619
Yang M, Xie W, Mostaghel E, et al. SLCO2B1 and SLCO1B3 may determine time to progression for patients receiving androgen deprivation therapy for prostate cancer. J Clin Oncol. 2011;29(18):2565-2573. doi:10.1200/JCO.2010.31.2405
Wang X, Harshman LC, Xie W, et al. Association of SLCO2B1 genotypes with time to progression and overall survival in patients receiving androgen-deprivation therapy for prostate cancer. J Clin Oncol. 2016;34(4):352-359. doi:10.1200/JCO.2015.62.5988
Tryka KA, Hao L, Sturcke A, et al. NCBI's database of genotypes and phenotypes: dbGaP. Nucleic Acids Res. 2014;42(D1):D975-D979. doi:10.1093/nar/gkt1211
Kinzi J, Grube M, Zu Schwabedissen HE. OATP2B1-the underrated member of the organic anion transporting polypeptide family of drug transporters? Biochem Pharmacol. 2021;188:114534. doi:10.1016/j.bcp.2021.114534
McFeely SJ, Wu L, Ritchie TK, Unadkat J. Organic anion transporting polypeptide 2B1-more than a glass-full of drug interactions. Pharmacol Ther. 2019;196:204-215. doi:10.1016/j.pharmthera.2018.12.009
Srivilai J, Minale G, Scholfield CN, Ingkaninan K. Discovery of natural steroid 5 alpha-reductase inhibitors. Assay Drug Dev Technol. 2019;17(2):44-57. doi:10.1089/adt.2018.870
Song H, Bai W, Sun X, et al. Association between pharmacokinetics of lenvatinib in healthy subjects and genetic polymorphisms of ABCB1 3435C>T and ABCB1 2677G>T/A. Xenobiotica. 2021;51(12):1463-1469. doi:10.1080/00498254.2021.2023913
Miller E, Zalzala MH, Abunnaja MS, et al. Effects of human sulfotransferase 2A1 genetic polymorphisms 3 on the sulfation of tibolone. Eur J Drug Metab Pharmacokinet. 2018;43(4):415-421. doi:10.1007/s13318-017-0458-2
Abunnaja MS, Alherz FA, El Daibani AA, et al. Effects of genetic polymorphisms on the sulfation of dehydroepiandrosterone and pregnenolone by human cytosolic sulfotransferase SULT2A1. Biochem Cell Biol. 2018;96(5):655-662. doi:10.1139/bcb-2017-0341

Auteurs

Yixin Hu (Y)

Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Jianyuan Wu (J)

Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China.

Bingyu Cheng (B)

Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Rongli You (R)

Department of Pharmacology, Beijing Zhendong Pharmaceutical Research Institute Co, Ltd, Beijing, China.

Xueyan Yin (X)

Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
The Third Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, China.

Guiying Chen (G)

Wuhan Hongren Biopharmaceutical Inc., Wuhan, China.

Ling Yang (L)

Wuhan Hongzhi Biomedical Inc., Wuhan, China.

Yang Zhang (Y)

Wuhan Hongren Biopharmaceutical Inc., Wuhan, China.

Luqin Si (L)

Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Hongliang Jiang (H)

Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Yongjun Zhang (Y)

The Third Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, China.

Jianying Huang (J)

Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China.

Jiangeng Huang (J)

Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Classifications MeSH