MicroRNA expression profile of human umbilical vein endothelial cells in response to coxsackievirus A10 infection reveals a potential role of miR-143-3p in maintaining the integrity of the blood-brain barrier.
and mouth disease (HFMD)
blood–brain barrier (BBB)
coxsackievirus A10 (CV-A10)
foot
hand
high-throughput sequencing
microRNAs (miRNAs)
Journal
Frontiers in cellular and infection microbiology
ISSN: 2235-2988
Titre abrégé: Front Cell Infect Microbiol
Pays: Switzerland
ID NLM: 101585359
Informations de publication
Date de publication:
2023
2023
Historique:
received:
06
05
2023
accepted:
12
07
2023
medline:
15
8
2023
pubmed:
14
8
2023
entrez:
14
8
2023
Statut:
epublish
Résumé
Coxsackievirus A10 (CV-A10) has been one of the main etiologies of hand, foot, and mouth disease (HFMD) epidemics in recent years and can cause mild to severe illness and even death. Most of these severe and fatal cases were closely associated with neurological impairments, but the potential mechanism of neuropathological injury triggered by CV-A10 infection has not been elucidated. MicroRNAs (miRNAs), implicated in the regulation of gene expression in a post-transcriptional manner, play a vital role in the pathogenesis of various central nervous system (CNS) diseases; therefore, they serve as diagnostic biomarkers and are emerging as novel therapeutic targets for CNS injuries. To gain insights into the CV-A10-induced regulation of host miRNA-processing machinery, we employed high-throughput sequencing to identify differentially expressed miRNAs in CV-A10-infected human umbilical vein endothelial cells (HUVECs) and further analyzed the potential functions of these miRNAs during CV-A10 infection. The results showed that CV-A10 infection could induce 189 and 302 significantly differentially expressed miRNAs in HUVECs at 24 and 72 hpi, respectively, compared with the uninfected control. Moreover, the expression of four selected miRNAs and their relevant mRNAs was determined to verify the sequencing data by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) methods. After that, gene target prediction and functional annotation revealed that the targets of these dysregulated miRNAs were mostly enriched in cell proliferation, signal transduction, cAMP signalling pathway, cellular response to interleukin-6, ventral spinal cord interneuron differentiation, negative regulation of glial cell differentiation, neuron migration, positive regulation of neuron projection development, etc., which were primarily involved in the processes of basic physiology, host immunity, and neurological impairments and further reflected vital regulatory roles of miRNA in viral pathogenicity. Finally, the construction of a miRNA-regulated network also suggested that the complex regulatory mechanisms mediated by miRNAs might be involved in viral pathogenesis and virus-host interactions during CV-A10 infection. Furthermore, among these dysregulated miRNAs, miR-143-3p was demonstrated to be involved in the maintenance of blood-brain barrier (BBB) integrity.
Identifiants
pubmed: 37577373
doi: 10.3389/fcimb.2023.1217984
pmc: PMC10419304
doi:
Substances chimiques
antineoplaston A10
16VY3TM7ZO
MicroRNAs
0
MIRN143 microRNA, human
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1217984Informations de copyright
Copyright © 2023 Hu, Cui, Wang, Liu, Zhang, Wang, Song and Zhang.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Viruses. 2020 Jul 26;12(8):
pubmed: 32722537
Acta Virol. 2018;62(1):16-27
pubmed: 29521099
Immunity. 2007 Jul;27(1):123-34
pubmed: 17613256
Virus Res. 2017 Jan 15;228:90-101
pubmed: 27890633
Int J Mol Sci. 2019 Oct 20;20(20):
pubmed: 31635198
Expert Rev Vaccines. 2016 May;15(5):599-606
pubmed: 26732723
BMC Cancer. 2018 Nov 28;18(1):1179
pubmed: 30486878
Microbiology (Reading). 2011 Oct;157(Pt 10):2933-2941
pubmed: 21737496
Mol Diagn Ther. 2016 Dec;20(6):509-518
pubmed: 27378479
Trends Mol Med. 2017 Jan;23(1):80-93
pubmed: 27989642
Nat Rev Rheumatol. 2020 Jun;16(6):335-345
pubmed: 32327746
Int J Mol Med. 2011 Aug;28(2):255-60
pubmed: 21567078
PLoS Pathog. 2014 Apr 10;10(4):e1004070
pubmed: 24722419
Front Cell Infect Microbiol. 2018 Apr 09;8:110
pubmed: 29686973
Int J Mol Sci. 2020 Nov 07;21(21):
pubmed: 33171811
PLoS One. 2017 May 22;12(5):e0177657
pubmed: 28531227
Int J Mol Sci. 2021 Dec 24;23(1):
pubmed: 35008594
Neurobiol Dis. 2010 Jan;37(1):13-25
pubmed: 19664713
Emerg Microbes Infect. 2018 Sep 19;7(1):155
pubmed: 30228270
J Virol. 2019 Aug 28;93(18):
pubmed: 31243136
Virus Res. 2018 Mar 2;247:111-119
pubmed: 29447975
Sci Rep. 2016 Oct 21;6:35642
pubmed: 27767041
Nat Rev Genet. 2012 Apr 18;13(5):358-69
pubmed: 22510765
Curr Trop Med Rep. 2020 Mar;7(1):25-36
pubmed: 32775145
Biomed Pharmacother. 2020 Dec;132:110869
pubmed: 33113427
Rev Inst Med Trop Sao Paulo. 2018 Nov 08;60:e70
pubmed: 30427405
Crit Rev Microbiol. 2018 Nov;44(6):701-714
pubmed: 30106324
Front Bioeng Biotechnol. 2021 Jun 11;9:673415
pubmed: 34178963
Intervirology. 2015;58(5):332-41
pubmed: 26829480
Infect Genet Evol. 2019 Sep;73:401-410
pubmed: 31176031
Curr Pharm Des. 2011;17(26):2755-61
pubmed: 21827410
Poult Sci. 2020 Apr;99(4):1838-1846
pubmed: 32241464
Intervirology. 2018;61(3):133-142
pubmed: 30404089
PLoS Pathog. 2019 Nov 15;15(11):e1008142
pubmed: 31730654
J Gene Med. 2023 Jul;25(7):e3127
pubmed: 31693770
Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361
pubmed: 27899662
Pediatr Infect Dis J. 2021 Apr 1;40(4):289-294
pubmed: 33181780
Int J Oncol. 2017 Nov;51(5):1415-1426
pubmed: 29048611
Cutis. 2018 Nov;102(5):353-356
pubmed: 30566537
Virus Res. 2020 Jan 15;276:197808
pubmed: 31712122
Eur J Clin Microbiol Infect Dis. 2018 Mar;37(3):391-398
pubmed: 29411190
Expert Rev Anti Infect Ther. 2019 Apr;17(4):233-242
pubmed: 30793637
J Cell Biochem. 2019 Oct;120(10):17573-17583
pubmed: 31111550
J Neurosci. 2018 Jan 3;38(1):32-50
pubmed: 29114076
Am Fam Physician. 2019 Oct 1;100(7):408-414
pubmed: 31573162
Antiviral Res. 2015 Dec;124:43-53
pubmed: 26515789
Med Microbiol Immunol. 2016 Oct;205(5):397-407
pubmed: 27406374
J Autoimmun. 2020 Jul;111:102452
pubmed: 32291137
Gene. 2021 Oct 30;801:145854
pubmed: 34274468
Mediators Inflamm. 2020 Jan 31;2020:9273241
pubmed: 32089650
Circ Res. 2017 Sep 29;121(8):970-980
pubmed: 28724745
Expert Rev Vaccines. 2018 Sep;17(9):819-831
pubmed: 30095317
Acta Microbiol Immunol Hung. 2019 Jun 1;66(2):247-254
pubmed: 30465450
Genomics Proteomics Bioinformatics. 2009 Dec;7(4):147-54
pubmed: 20172487
Mediators Inflamm. 2013;2013:495848
pubmed: 23737648
BMC Med Inform Decis Mak. 2018 Dec 7;18(Suppl 5):119
pubmed: 30526566
BMC Microbiol. 2020 Jul 20;20(1):214
pubmed: 32689931
Rev Med Virol. 2020 Nov;30(6):1-9
pubmed: 32845568
PLoS Pathog. 2020 Jun 23;16(6):e1008308
pubmed: 32574204
Mol Immunol. 2013 Dec;56(4):781-93
pubmed: 23962477
Nat Microbiol. 2021 May;6(5):682-696
pubmed: 33558653
Virulence. 2021 Dec;12(1):968-980
pubmed: 33724154