Building Block-Based Binding Predictions for DNA-Encoded Libraries.


Journal

Journal of chemical information and modeling
ISSN: 1549-960X
Titre abrégé: J Chem Inf Model
Pays: United States
ID NLM: 101230060

Informations de publication

Date de publication:
28 08 2023
Historique:
medline: 29 8 2023
pubmed: 14 8 2023
entrez: 14 8 2023
Statut: ppublish

Résumé

DNA-encoded libraries (DELs) provide the means to make and screen millions of diverse compounds against a target of interest in a single experiment. However, despite producing large volumes of binding data at a relatively low cost, the DEL selection process is susceptible to noise, necessitating computational follow-up to increase signal-to-noise ratios. In this work, we present a set of informatics tools to employ data from prior DEL screen(s) to gain information about which building blocks are most likely to be productive when designing new DELs for the same target. We demonstrate that similar building blocks have similar probabilities of forming compounds that bind. We then build a model from the inference that the combined behavior of individual building blocks is predictive of whether an overall compound binds. We illustrate our approach on a set of three-cycle OpenDEL libraries screened against soluble epoxide hydrolase (sEH) and report performance of more than an order of magnitude greater than random guessing on a holdout set, demonstrating that our model can serve as a baseline for comparison against other machine learning models on DEL data. Lastly, we provide a discussion on how we believe this informatics workflow could be applied to benefit researchers in their specific DEL campaigns.

Identifiants

pubmed: 37578123
doi: 10.1021/acs.jcim.3c00588
pmc: PMC10466377
doi:

Substances chimiques

Small Molecule Libraries 0
DNA 9007-49-2

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

5120-5132

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM108889
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM148236
Pays : United States

Références

Chembiochem. 2017 May 4;18(9):837-842
pubmed: 28281333
ACS Pharmacol Transl Sci. 2021 Jun 14;4(4):1265-1279
pubmed: 34423264
Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5381-3
pubmed: 1608946
SLAS Discov. 2018 Jun;23(5):397-404
pubmed: 29361864
Chem Commun (Camb). 2019 Nov 18;55(89):13330-13341
pubmed: 31633708
Nat Rev Drug Discov. 2017 Feb;16(2):131-147
pubmed: 27932801
J Chem Inf Model. 2008 May;48(5):941-8
pubmed: 18416545
J Med Chem. 2002 Sep 12;45(19):4350-8
pubmed: 12213076
ACS Comb Sci. 2017 Apr 10;19(4):234-238
pubmed: 28287689
Acc Chem Res. 2023 Feb 21;56(4):489-499
pubmed: 36757774
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17670-5
pubmed: 19001273
ACS Comb Sci. 2014 Jun 9;16(6):259-70
pubmed: 24749624
J Med Chem. 2020 Aug 27;63(16):8857-8866
pubmed: 32525674
J Med Chem. 2007 Jan 11;50(1):74-82
pubmed: 17201411
J Med Chem. 2010 May 27;53(10):3862-86
pubmed: 20158188
Bioorg Med Chem. 2021 Jul 1;41:116216
pubmed: 34023664
Korean J Anesthesiol. 2017 Apr;70(2):144-156
pubmed: 28367284
Acc Chem Res. 2014 Apr 15;47(4):1247-55
pubmed: 24673190
J Chem Inf Model. 2022 May 23;62(10):2316-2331
pubmed: 35535861
ACS Comb Sci. 2020 Aug 10;22(8):410-421
pubmed: 32531158
J Med Chem. 2009 Oct 8;52(19):5880-95
pubmed: 19746975
J Clin Epidemiol. 2015 Aug;68(8):855-9
pubmed: 25881487
SLAS Discov. 2018 Jun;23(5):405-416
pubmed: 29437521
Commun Chem. 2020 Sep 11;3(1):127
pubmed: 36703354
Chembiochem. 2017 May 4;18(9):829-836
pubmed: 28032411
Angew Chem Int Ed Engl. 2022 Apr 25;61(18):e202116999
pubmed: 35192245
Nat Biotechnol. 2018 Dec 03;:
pubmed: 30531897
Chem Rev. 2021 Jun 23;121(12):7155-7177
pubmed: 33044817
ACS Comb Sci. 2016 Jul 11;18(7):415-24
pubmed: 27116029
Bioconjug Chem. 2021 May 19;32(5):1001-1007
pubmed: 33914520
Nat Chem Biol. 2009 Sep;5(9):647-54
pubmed: 19648931
J Chem Inf Model. 2023 May 8;63(9):2719-2727
pubmed: 37079427

Auteurs

Chris Zhang (C)

Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, California 92697, United States.

Mary Pitman (M)

Department of Pharmaceutical Sciences, University of California, Irvine, 856 Health Sciences Road, Irvine, California 92697, United States.

Anjali Dixit (A)

Department of Pharmaceutical Sciences, University of California, Irvine, 856 Health Sciences Road, Irvine, California 92697, United States.

Sumudu Leelananda (S)

Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States.

Henri Palacci (H)

Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States.

Meghan Lawler (M)

Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States.

Svetlana Belyanskaya (S)

Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States.

LaShadric Grady (L)

Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States.

Joe Franklin (J)

Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States.

Nicolas Tilmans (N)

Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States.

David L Mobley (DL)

Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, California 92697, United States.
Department of Pharmaceutical Sciences, University of California, Irvine, 856 Health Sciences Road, Irvine, California 92697, United States.

Articles similaires

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Understanding the role of machine learning in predicting progression of osteoarthritis.

Simone Castagno, Benjamin Gompels, Estelle Strangmark et al.
1.00
Humans Disease Progression Machine Learning Osteoarthritis
Humans Artificial Intelligence Neoplasms Prognosis Image Processing, Computer-Assisted

Classifications MeSH