A high-throughput screening assay for silencing established HIV-1 macrophage infection identifies nucleoside analogs that perturb H3K9me3 on proviral genomes.
HIV
epigenetics
high-throughput screen
macrophage
silencing
Journal
Journal of virology
ISSN: 1098-5514
Titre abrégé: J Virol
Pays: United States
ID NLM: 0113724
Informations de publication
Date de publication:
31 08 2023
31 08 2023
Historique:
medline:
1
9
2023
pubmed:
14
8
2023
entrez:
14
8
2023
Statut:
ppublish
Résumé
HIV-infected macrophages are long-lived cells that represent a barrier to functional cure. Additionally, low-level viral expression by central nervous system (CNS) macrophages contributes to neurocognitive deficits that develop despite antiretroviral therapy (ART). We recently identified H3K9me3 as an atypical epigenetic mark associated with chronic HIV infection in macrophages. Thus, strategies are needed to suppress HIV-1 expression in macrophages, but the unique myeloid environment and the responsible macrophage/CNS-tropic strains require cell/strain-specific approaches. Here, we generated an HIV-1 reporter virus from a CNS-derived strain with intact auxiliary genes expressing destabilized luciferase. We employed this reporter virus in polyclonal infection of primary human monocyte-derived macrophages (MDM) for a high-throughput screen (HTS) to identify compounds that suppress virus expression from established macrophage infection. Screening ~6,000 known drugs and compounds yielded 214 hits. A secondary screen with 10-dose titration identified 24 meeting criteria for HIV-selective activity. Using three replication-competent CNS-derived macrophage-tropic HIV-1 isolates and viral gene expression readout in MDM, we confirmed the effect of three purine analogs, nelarabine, fludarabine, and entecavir, showing the suppression of HIV-1 expression from established macrophage infection. Nelarabine inhibited the formation of H3K9me3 on HIV genomes in macrophages. Thus, this novel HTS assay can identify suppressors of HIV-1 transcription in established macrophage infection, such as nucleoside analogs and HDAC inhibitors, which may be linked to H3K9me3 modification. This screen may be useful to identify new metabolic and epigenetic agents that ameliorate HIV-driven neuroinflammation in people on ART or prevent viral recrudescence from macrophage reservoirs in strategies to achieve ART-free remission. IMPORTANCE Macrophages infected by HIV-1 are a long-lived reservoir and a barrier in current efforts to achieve HIV cure and also contribute to neurocognitive complications in people despite antiretroviral therapy (ART). Silencing HIV expression in these cells would be of great value, but the regulation of HIV-1 in macrophages differs from T cells. We developed a novel high-throughput screen for compounds that can silence established infection of primary macrophages, and identified agents that downregulate virus expression and alter provirus epigenetic profiles. The significance of this assay is the potential to identify new drugs that act in the unique macrophage environment on relevant viral strains, which may contribute to adjunctive treatment for HIV-associated neurocognitive disorders and/or prevent viral rebound in efforts to achieve ART-free remission or cure.
Identifiants
pubmed: 37578230
doi: 10.1128/jvi.00653-23
pmc: PMC10506489
doi:
Substances chimiques
Nucleosides
0
Histones
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0065323Subventions
Organisme : NIAID NIH HHS
ID : P30 AI045008
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA010815
Pays : United States
Organisme : NIAID NIH HHS
ID : R33 AI133696
Pays : United States
Organisme : NIAID NIH HHS
ID : R61 AI133696
Pays : United States
Déclaration de conflit d'intérêts
Paul Lieberman declares his role as a founder of Vironika, LLC, as a Conflict of Interest that is managed by the Wistar Institute.
Références
J Virol. 2004 Nov;78(22):12308-19
pubmed: 15507618
BMC Biol. 2016 Jun 23;14:50
pubmed: 27338237
Sci Rep. 2016 Oct 11;6:34920
pubmed: 27725726
Nucleic Acids Res. 2005 Apr 22;33(7):2318-31
pubmed: 15849318
J Leukoc Biol. 2014 Jan;95(1):71-81
pubmed: 24158961
J Virol. 2009 May;83(9):4528-37
pubmed: 19211752
AIDS Res Hum Retroviruses. 2019 Jul;35(7):634-641
pubmed: 30880401
J Neurovirol. 2001 Jun;7(3):235-49
pubmed: 11517398
J Neuroimmune Pharmacol. 2019 Mar;14(1):94-109
pubmed: 29987742
J Virol. 1991 Aug;65(8):3973-85
pubmed: 1830110
Nucleic Acids Res. 2012 Mar;40(5):1904-15
pubmed: 22067449
J Exp Med. 1989 Oct 1;170(4):1149-63
pubmed: 2571666
Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12655-60
pubmed: 23852730
PLoS Pathog. 2015 Jun 11;11(6):e1004955
pubmed: 26067822
Curr Opin Infect Dis. 2022 Jun 1;35(3):223-230
pubmed: 35665716
MMWR Morb Mortal Wkly Rep. 2019 Dec 06;68(48):1117-1123
pubmed: 31805031
J Virol. 2002 Sep;76(18):9407-19
pubmed: 12186923
J Virol. 2004 Sep;78(17):9105-14
pubmed: 15308706
Nat Rev Neurol. 2016 May;12(5):309
pubmed: 27080521
Traffic. 2002 Oct;3(10):718-29
pubmed: 12230470
J Virol. 2022 Apr 13;96(7):e0016222
pubmed: 35319230
Curr HIV/AIDS Rep. 2022 Oct;19(5):344-357
pubmed: 35867211
N Engl J Med. 2007 Jun 21;356(25):2614-21
pubmed: 17582071
J Virol. 2001 Feb;75(4):1842-56
pubmed: 11160683
J Clin Invest. 1992 Jan;89(1):176-83
pubmed: 1370293
HIV Med. 2020 Jan;21(1):30-42
pubmed: 31589807
Cell Host Microbe. 2016 Mar 9;19(3):304-10
pubmed: 26962941
J Leukoc Biol. 2022 Nov;112(5):1297-1315
pubmed: 36148896
Science. 1987 May 15;236(4803):819-22
pubmed: 3646751