Quantitative uptake in 99m Tc-EDDA/HYNIC-TOC somatostatin receptor imaging - the effect of long-acting release somatostatin analogue therapy.


Journal

Nuclear medicine communications
ISSN: 1473-5628
Titre abrégé: Nucl Med Commun
Pays: England
ID NLM: 8201017

Informations de publication

Date de publication:
01 Nov 2023
Historique:
medline: 13 10 2023
pubmed: 14 8 2023
entrez: 14 8 2023
Statut: ppublish

Résumé

Withdrawal of long-acting release somatostatin analogue (LAR-SSA) treatment before somatostatin receptor imaging is based on empirical reasoning that it may block uptake at receptor sites. This study aims to quantify differences in uptake of 99m Tc-EDDA/HYNIC-TOC between patients receiving LAR-SSA and those who were not. Quantification of 177 patients (55 on LAR-SSA) imaged with 99m Tc-EDDA/HYNIC-TOC was performed, with analysis of pathological tissue and organs with physiological uptake using thresholded volumes of interest. Standardised uptake values (SUVs) and tumour/background (T/B) ratios were calculated and compared between the two patient groups. SUVs were significantly lower for physiological organ uptake for patients on LAR-SSA (e.g. spleen: SUV max 13.3 ± 5.9 versus 33.9 ± 9.0, P  < 0.001); there was no significant difference for sites of pathological uptake (e.g. nodal metastases: SUV max 19.2 ± 13.0 versus 17.4 ± 11.5, P  = 0.552) apart from bone metastases (SUV max 14.1 ± 13.5 versus 7.7 ± 8.0, P  = 0.017) where it was significantly higher. LAR-SSA has an effect only on physiological organ uptake of 99m Tc-EDDA/HYNIC-TOC, reducing uptake. It has no significant effect on pathological uptake for most sites of primary and metastatic disease. This should be taken into account if making quantitative measurements, calculating T/B ratios or assigning Krenning Scores. There is the potential for improved dosimetric results in Peptide Receptor Radionuclide Therapy by maintaining patients on LAR-SSA.

Identifiants

pubmed: 37578312
doi: 10.1097/MNM.0000000000001746
pii: 00006231-990000000-00185
doi:

Substances chimiques

Receptors, Somatostatin 0
Organotechnetium Compounds 0
EDDA 5657-17-0
Technetium 7440-26-8
Somatostatin 51110-01-1
Radiopharmaceuticals 0
Octreotide RWM8CCW8GP

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

944-952

Informations de copyright

Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.

Références

Barakat MT, Meeran K, Bloom SR. Neuroendocrine tumours. Endocr Relat Cancer 2004; 11:1–18.
Van Der Zwan JM, Trama A, Otter R, Larrañaga N, Tavilla A, Marcos-Gragera R, et al.; RARECARE WG. Rare neuroendocrine tumours: results of the surveillance of rare cancers in Europe project. Eur J Cancer 2013; 49:2565–2578.
Bozkurt MF, Virgolini I, Balogova S, Beheshti M, Rubello D, Decristoforo C, et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F–DOPA. Eur J Nucl Med Mol Imaging 2017; 44:1588–1601.
Breeman WA, De Jong M, Kwekkeboom DJ, Valkema R, Bakker WH, Kooij PP, et al. Somatostatin receptor-mediated imaging and therapy: Basic science, current knowledge, limitations and future perspectives. Eur J Nucl Med 2001; 28:1421–1429.
Polatom. TEKTROTYD 16 micrograms kit summary of product characteristics. 2019. https://mhraproducts4853.blob.core.windows.net/docs/a48b6388d64755814c678be4addf93cc4877f79d [Accessed 3 August 2023]
Decristoforo C, Mather SJ, Cholewinski W, Donnemiller E, Riccabona G, Moncayo R. (99m)Tc-EDDA/HYNIC-TOC: A new (99m)Tc-labelled radiopharmaceutical for imaging somatostatin receptor-positive tumours: first clinical results and intra-patient comparison with 111In-labelled octreotide derivatives. Eur J Nucl Med 2000; 27:1318–1325.
Gabriel M, Decristoforo C, Donnemiller E, Ulmer H, Rychlinski CW, Mather SJ, et al. An intrapatient comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPA-octreotide for diagnosis of somatostatin receptor-expressing tumors. J Nucl Med 2003; 44:708–716.
Zaknun JJ, Bodei L, Mueller-Brand J, Pavel ME, Baum RP, Hörsch D, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2013; 40:800–816.
Arnold R, Trautmann ME, Creutzfeldt W, Benning R, Benning M, Neuhaus C, et al. Somatostatin analogue octreotide and inhibition of tumour growth in metastatic endocrine gastroenteropancreatic tumours. Gut 1996; 38:430–438.
Guillermet-Guibert J, Lahlou H, Cordelier P, Bousquet C, Pyronnet S, Susini C. Physiology of somatostatin receptors. J Endocrinol Invest 2005; 28:5–9. http://www.ncbi.nlm.nih.gov/pubmed/16625838 . [Accessed 1 November 2021]
Pavel M, O’Toole D, Costa F, Capdevila J, Gross D, Kianmanesh R, et al.; Vienna Consensus Conference participants. ENETS consensus guidelines update for the management of distant metastatic disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology 2016; 103:172–185.
Anthony L, Freda PU. From somatostatin to octreotide LAR: evolution of a somatostatin analogue. Curr Med Res Opin 2009; 25:2989–2999.
Hope TA, Allen-Auerbach M, Bodei L, Calais J, Dahlbom M, Dunnwald LK, et al. SNMMI procedure Standard/EANM practice guideline for SSTR PET: imaging neuroendocrine tumors. J Nucl Med 2023; 64:204–210.
Janson ET, Kälkner KM, Eriksson B, Westlin JE, Öberg K. Somatostatin receptor scintigraphy during treatment with lanreotide in patients with neuroendocrine tumors. Nucl Med Biol 1999; 26:877–882.
Ayati N, Lee ST, Zakavi R, Pathmaraj K, Al-Qatawna L, Poon A, et al. Long-acting somatostatin analog therapy differentially alters 68 Ga-DOTATATE uptake in normal tissues compared with primary tumors and metastatic lesions. J Nucl Med 2018; 59:223–227.
Cherk MH, Kong G, Hicks RJ, Hofman MS. Changes in biodistribution on 68Ga-DOTA-Octreotate PET/CT after long acting somatostatin analogue therapy in neuroendocrine tumour patients may result in pseudoprogression. Cancer Imaging 2018; 18:1–9.
Velikyan I, Sundin A, Eriksson B, Lundqvist H, Sörensen J, Bergström M, et al. In vivo binding of [68Ga]-DOTATOC to somatostatin receptors in neuroendocrine tumours - impact of peptide mass. Nucl Med Biol 2010; 37:265–275.
Li Y, Xu J, Xu X, Zhang J, Zhang Y. Long-acting octreotide treatment has no impact on tumor uptake of 99mTc-HYNIC-TOC in patients with neuroendocrine tumors. Nucl Med Commun 2019; 40:1005–1010.
Morland D, Laures N, Triumbari EKA, Perrier M, Imperiale A, Annunziata S, et al. Impact of cold somatostatin analog administration on somatostatin receptor imaging. Clin Nucl Med 2023; 48:467–473.
Kim Y, Yoo C, Oh SJ, Lee SJ, Kang J, Hwang HS, et al. Tumour-to-liver ratio determined by [68Ga]Ga-DOTA-TOC PET/CT as a prognostic factor of lanreotide efficacy for patients with well-differentiated gastroenteropancreatic-neuroendocrine tumours. EJNMMI Res 2020; 10:10–63.
Hicks RJ, Dromain C, de Herder WW, Costa FP, Deroose CM, Frilling A, et al. ENETS standardized (synoptic) reporting for molecular imaging studies in neuroendocrine tumours. J Neuroendocrinol 2022; 34:1–10.
Hennrich U, Kopka K. Lutathera®: the first FDA-and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals 2019; 12.
Werner RA, Bundschuh RA, Bundschuh L, Javadi MS, Higuchi T, Weich A, et al. Molecular imaging reporting and data systems (MI-RADS): a generalizable framework for targeted radiotracers with theranostic implications. Ann Nucl Med 2018; 32:512–522.
Nioche C, Orlhac F, Boughdad S, Reuze S, Goya-Outi J, Robert C, et al. A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res 2018; 78:4786–4789.
Bashir U, Azad G, Siddique MM, Dhillon S, Patel N, Bassett P, et al. The effects of segmentation algorithms on the measurement of 18F-FDG PET texture parameters in non-small cell lung cancer. EJNMMI Res 2017; 7:1–9.
Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving considerations for PET response criteria in solid tumors. J Nucl Med 2009; 50:122S–150S.
R Core Team. R: a language and environment for statistical computing. 2021. https://www.r-project.org/ . [Accessed 1 March 2022]
Wickham H. ggplot2: elegant graphics for data analysis. Springer-Verlag New York; 2016. https://ggplot2.tidyverse.org . [Accessed 21 August 2021]
Sundin A, Arnold R, Baudin E, Cwikla JB, Eriksson B, Fanti S, et al.; Antibes Consensus Conference participants. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological, nuclear medicine and hybrid imaging. Neuroendocrinology 2017; 105:212–244.
Antonijoan RM, Barbanoj MJ, Cordero JA, Peraire C, Obach R, Vallès J, et al. Pharmacokinetics of a new Autogel formulation of the somatostatin analogue lanreotide after a single subcutaneous dose in healthy volunteers. J Pharm Pharmacol 2010; 56:471–476.
Chen T, Miller TF, Prasad P, Lee J, Krauss J, Miscik K, et al. Pharmacokinetics, pharmacodynamics, and safety of microencapsulated octreotide acetate in healthy subjects. J Clin Pharmacol 2000; 40:475–481.
Kunikowska J, Lewington V, Krolicki L. Optimizing somatostatin receptor imaging in patients with neuroendocrine tumors: The impact of99mTc-HYNICTOC SPECT/SPECT/CT versus68Ga-DOTATATE PET/CT upon clinical management. Clin Nucl Med 2017; 42:905–911.
De Camargo Etchebehere ECS, De Oliveira Santos A, Gumz B, Vicente A, Hoff PG, Corradi G, et al. 68Ga-DOTATATE PET/CT, 99mTc-HYNIC-octreotide SPECT/CT, and whole-body MR imaging in detection of neuroendocrine tumors: a prospective trial. J Nucl Med 2014; 55:1598–1604.
Reilly C, Gemmell AJ, McLaughlin IM, Fleming R, Reed N, McIntosh D, et al. Characterisation of 99mTc EDDA/HYNIC-TOC (Tektrotyd) physiological and neuroendocrine tumour uptake using SPECT/CT standardised uptake values: initial experience. Nucl Med Commun 2021; 42:935–939.
Kuyumcu S, Özkan ZG, Sanli Y, Yilmaz E, Mudun A, Adalet I, et al. Physiological and tumoral uptake of 68Ga-DOTATATE: standardized uptake values and challenges in interpretation. Ann Nucl Med 2013; 27:538–545.
Prasad V, Baum RP. Biodistribution of the Ga-68 labeled somatostain analogue DOTA-NOC in patients with neuroendocrine tumors. Q J Nucl Med Mol Imaging 2010; 54:61–67.
Kroiss A, Putzer D, Decristoforo C, Uprimny C, Warwitz B, Nilica B, et al. 68Ga-DOTA-TOC uptake in neuroendocrine tumour and healthy tissue: differentiation of physiological uptake and pathological processes in PET/CT. Eur J Nucl Med Mol Imaging 2013; 40:514–523.

Auteurs

Alastair J Gemmell (AJ)

Department of Nuclear Medicine, Gartnavel General Hospital, NHS Greater Glasgow & Clyde.
Department of Clinical Physics & Bioengineering, NHS Greater Glasgow & Clyde.
School of Mathematics & Statistics, University of Glasgow, Glasgow, UK.

Colin M Brown (CM)

Department of Nuclear Medicine, Gartnavel General Hospital, NHS Greater Glasgow & Clyde.
Department of Clinical Physics & Bioengineering, NHS Greater Glasgow & Clyde.

Surajit Ray (S)

School of Mathematics & Statistics, University of Glasgow, Glasgow, UK.

Alexander Small (A)

Department of Nuclear Medicine, Gartnavel General Hospital, NHS Greater Glasgow & Clyde.
Department of Clinical Physics & Bioengineering, NHS Greater Glasgow & Clyde.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH