Edge Contacts to Atomically Precise Graphene Nanoribbons.
edge contacts
electronic device
graphene nanoribbons (GNRs)
h-BN encapsulation
quantum dot
temperature-activated hopping
Journal
ACS nano
ISSN: 1936-086X
Titre abrégé: ACS Nano
Pays: United States
ID NLM: 101313589
Informations de publication
Date de publication:
10 Oct 2023
10 Oct 2023
Historique:
pubmed:
14
8
2023
medline:
14
8
2023
entrez:
14
8
2023
Statut:
ppublish
Résumé
Bottom-up-synthesized graphene nanoribbons (GNRs) are an emerging class of designer quantum materials that possess superior properties, including atomically controlled uniformity and chemically tunable electronic properties. GNR-based devices are promising candidates for next-generation electronic, spintronic, and thermoelectric applications. However, due to their extremely small size, making electrical contact with GNRs remains a major challenge. Currently, the most commonly used methods are top metallic electrodes and bottom graphene electrodes, but for both, the contact resistance is expected to scale with overlap area. Here, we develop metallic edge contacts to contact nine-atom-wide armchair GNRs (9-AGNRs) after encapsulation in hexagonal boron-nitride (
Identifiants
pubmed: 37578964
doi: 10.1021/acsnano.3c00782
pmc: PMC10569104
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
18706-18715Références
Adv Mater. 2014 Jun 25;26(24):4134-8
pubmed: 24711068
ACS Nano. 2019 Nov 26;13(11):13169-13175
pubmed: 31714742
Nature. 2013 May 30;497(7451):594-7
pubmed: 23676678
ACS Nano. 2020 May 26;14(5):5754-5762
pubmed: 32223259
Nat Electron. 2023;6(8):572-581
pubmed: 37636241
Science. 2013 Nov 1;342(6158):614-7
pubmed: 24179223
J Am Chem Soc. 2016 Nov 30;138(47):15488-15496
pubmed: 27933922
Phys Rev Lett. 2012 May 25;108(21):216801
pubmed: 23003288
ACS Nano. 2017 Sep 26;11(9):8924-8929
pubmed: 28880526
Sci Rep. 2020 Feb 6;10(1):1988
pubmed: 32029795
Nature. 2018 Aug;560(7717):209-213
pubmed: 30089919
ACS Nano. 2012 Aug 28;6(8):6930-5
pubmed: 22853456
Nat Mater. 2023 Feb;22(2):180-185
pubmed: 36732344
ACS Nano. 2018 Jan 23;12(1):74-81
pubmed: 29200262
Nature. 2016 Mar 24;531(7595):489-92
pubmed: 27008967
Nat Commun. 2013;4:1710
pubmed: 23591877
Nat Commun. 2017 Sep 21;8(1):633
pubmed: 28935943
Phys Rev Lett. 2004 Oct 22;93(17):176602
pubmed: 15525099
Science. 2016 Jul 29;353(6298):aac9439
pubmed: 27471306
Nano Lett. 2019 Oct 9;19(10):6914-6923
pubmed: 31513426
Nano Lett. 2019 Aug 14;19(8):5077-5085
pubmed: 31283241
Adv Mater. 2020 Nov;32(45):e2001893
pubmed: 32945038
Nat Nanotechnol. 2020 Jun;15(6):437-443
pubmed: 32313219
ACS Nano. 2019 Nov 26;13(11):13083-13091
pubmed: 31573799
ACS Nano. 2012 Jun 26;6(6):5539-48
pubmed: 22631451
Nat Chem. 2022 Dec;14(12):1451-1458
pubmed: 36163268
J Comput Chem. 2011 May;32(7):1456-65
pubmed: 21370243
Nanoscale. 2017 Feb 23;9(8):2785-2792
pubmed: 28155928
Adv Mater. 2020 Mar;32(12):e1906054
pubmed: 32048409
Phys Rev Lett. 2009 Jul 24;103(4):046810
pubmed: 19659388
Nat Commun. 2021 May 5;12(1):2542
pubmed: 33953174
ACS Nano. 2021 Mar 23;15(3):3674-3708
pubmed: 33656860
Nat Nanotechnol. 2010 Oct;5(10):722-6
pubmed: 20729834
Nature. 2021 Oct;598(7880):287-292
pubmed: 34645998
Phys Rev Lett. 2015 Nov 20;115(21):216801
pubmed: 26636862
J Chem Phys. 2020 May 21;152(19):194103
pubmed: 33687235
Nature. 2018 Aug;560(7717):204-208
pubmed: 30089918
Adv Mater. 2012 Mar 15;24(11):1357-87
pubmed: 22354535