Sensory processing of native and non-native phonotactic patterns in the alpha and beta frequency bands.

Cross-linguistic EEG Native language Sensory processing of speech Speech perception Time-frequency

Journal

Neuropsychologia
ISSN: 1873-3514
Titre abrégé: Neuropsychologia
Pays: England
ID NLM: 0020713

Informations de publication

Date de publication:
10 Oct 2023
Historique:
received: 21 12 2022
revised: 03 08 2023
accepted: 10 08 2023
pmc-release: 10 10 2024
medline: 30 10 2023
pubmed: 15 8 2023
entrez: 14 8 2023
Statut: ppublish

Résumé

The phonotactic patterns of one's native language are established within cortical network processing during development. Sensory processing of native language phonotactic patterns established in memory may be modulated by top-down signals within the alpha and beta frequency bands. To explore sensory processing of phonotactic patterns in the alpha and beta frequency bands, electroencephalograms (EEGs) were recorded from native Polish and native English-speaking adults as they listened to spoken nonwords within same and different nonword pairs. The nonwords contained three phonological sequence onsets that occur in the Polish and English languages (/pət/, /st/, /sət/) and one onset sequence /pt/, which occurs in Polish but not in English onsets. Source localization modeling was used to transform 64-channel EEGs into brain source-level channels. Spectral power values in the low frequencies (2-29 Hz) were analyzed in response to the first nonword in nonword pairs within the context of counterbalanced listening-task conditions, which were presented on separate testing days. For the with-task listening condition, participants performed a behavioral task to the second nonword in the pairs. For the without-task condition participants were only instructed to listen to the stimuli. Thus, in the with-task condition, the first nonword served as a cue for the second nonword, the target stimulus. The results revealed decreased spectral power in the beta frequency band for the with-task condition compared to the without-task condition in response to native language phonotactic patterns. In contrast, the task-related suppression effects in response to the non-native phonotactic pattern /pt/ for the English listeners extended into the alpha frequency band. These effects were localized to source channels in left auditory cortex, the left anterior temporal cortex and the occipital pole. This exploratory study revealed a pattern of results that, if replicated, suggests that native language speech perception is supported by modulations in the alpha and beta frequency bands.

Identifiants

pubmed: 37579990
pii: S0028-3932(23)00193-8
doi: 10.1016/j.neuropsychologia.2023.108659
pmc: PMC10602391
mid: NIHMS1930381
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

108659

Subventions

Organisme : NIDCD NIH HHS
ID : R01 DC004290
Pays : United States

Informations de copyright

Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.

Références

Int J Psychophysiol. 2013 Jan;87(1):8-12
pubmed: 23069274
Nat Commun. 2021 Feb 19;12(1):1161
pubmed: 33608548
J Neurosci. 2022 Jun 22;42(25):5034-5046
pubmed: 35534226
Psychophysiology. 1989 Jul;26(4):431-6
pubmed: 2798692
Trends Cogn Sci. 2012 Feb;16(2):122-8
pubmed: 22226543
J Neurosci. 2011 Oct 5;31(40):14076-84
pubmed: 21976492
Neuroimage. 2010 Jun;51(2):867-76
pubmed: 20188186
Cereb Cortex. 2022 Aug 22;32(17):3763-3776
pubmed: 34875678
J Cogn Neurosci. 2001 Oct 1;13(7):994-1005
pubmed: 11595101
Brain Lang. 2012 Oct;123(1):30-41
pubmed: 22867752
Electroencephalogr Clin Neurophysiol. 1994 Mar;90(3):229-41
pubmed: 7511504
J Neurosci. 2016 Nov 30;36(48):12095-12105
pubmed: 27903720
Brain Res. 2013 Jul 19;1522:31-7
pubmed: 23643857
Neurosci Lett. 2016 Feb 12;614:119-26
pubmed: 26700876
Cereb Cortex. 2002 Aug;12(8):877-82
pubmed: 12122036
Front Neurosci. 2014 Aug 11;8:240
pubmed: 25157216
Sci Rep. 2022 Jan 10;12(1):314
pubmed: 35013345
Nat Neurosci. 2012 Mar 18;15(4):511-7
pubmed: 22426255
Hum Brain Mapp. 2020 Dec 15;41(18):5176-5186
pubmed: 32822098
Nature. 1964 Jul 25;203:380-4
pubmed: 14197376
Int J Psychophysiol. 2015 Feb;95(2):191-201
pubmed: 24681353
J Neurophysiol. 2005 Sep;94(3):1904-11
pubmed: 15901760
Trends Cogn Sci. 2012 Dec;16(12):606-17
pubmed: 23141428
Neuroimage. 2014 Feb 15;87:356-62
pubmed: 24188814
Neuroimage. 2002 Jan;15(1):273-89
pubmed: 11771995
Nat Commun. 2014 Sep 02;5:4694
pubmed: 25178489
J Neurosci. 2019 Dec 4;39(49):9797-9805
pubmed: 31641052
Neuroimage. 2012 Jan 2;59(1):655-62
pubmed: 21803165
Neuroscientist. 2014 Oct;20(5):509-21
pubmed: 24362813
Front Neurol. 2019 Aug 20;10:855
pubmed: 31481921
Front Hum Neurosci. 2022 Jan 04;15:706926
pubmed: 35058761
J Clin Neurophysiol. 2002 Apr;19(2):91-112
pubmed: 11997721
Int J Psychophysiol. 2005 Apr;56(1):65-80
pubmed: 15725491
iScience. 2023 May 12;26(6):106849
pubmed: 37305701
Science. 2014 Feb 28;343(6174):1006-10
pubmed: 24482117
Annu Rev Psychol. 2015 Jan 3;66:173-96
pubmed: 25251488
Front Hum Neurosci. 2013 Jan 04;6:340
pubmed: 23316150
Electroencephalogr Clin Neurophysiol. 1989 Feb;72(2):184-7
pubmed: 2464490
Neuroimage. 2016 Jan 1;124(Pt B):1254-1259
pubmed: 25941089
Behav Res Methods Instrum Comput. 2004 Aug;36(3):481-7
pubmed: 15641436
Cereb Cortex. 2011 Oct;21(10):2332-47
pubmed: 21368087
Annu Rev Psychol. 2022 Jan 4;73:79-102
pubmed: 34672685
Neuroimage. 2022 Feb 15;247:118746
pubmed: 34875382
IEEE Trans Med Imaging. 1999 Jan;18(1):32-42
pubmed: 10193695
Front Neurosci. 2017 Nov 06;11:569
pubmed: 29162999
J Cogn Neurosci. 2000 Jul;12(4):635-47
pubmed: 10936916
J Neurosci. 2008 Oct 1;28(40):10056-61
pubmed: 18829963
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7877-81
pubmed: 22547804
J Neurosci Methods. 2007 Aug 15;164(1):177-90
pubmed: 17517438
J Neurolinguistics. 2011 Sep;24(5):539-555
pubmed: 21822356
Nature. 1997 Jan 9;385(6612):157-61
pubmed: 8990118
Brain Res. 2010 Nov 11;1360:89-105
pubmed: 20816759
Neuroreport. 2000 Aug 3;11(11):2461-5
pubmed: 10943704
Neuroimage. 2016 Jul 1;134:122-131
pubmed: 27057960
Cereb Cortex. 2021 Jan 5;31(2):1131-1148
pubmed: 33063098
Prog Neurobiol. 2022 Jul;214:102285
pubmed: 35533812
Adv Child Dev Behav. 2015;48:1-52
pubmed: 25735940
Neuron. 2015 Oct 7;88(1):220-35
pubmed: 26447583
Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):3873-8
pubmed: 27001861
Cereb Cortex Commun. 2020 Mar 23;1(1):tgaa006
pubmed: 34296087
Neuron. 2015 Jan 21;85(2):390-401
pubmed: 25556836
eNeuro. 2017 Aug 2;4(4):
pubmed: 28785729
Biomed Sci Instrum. 1977 Apr 25-27;13:135-45
pubmed: 871500
Cell. 2021 Sep 2;184(18):4626-4639.e13
pubmed: 34411517
J Neurosci. 2019 Oct 30;39(44):8679-8689
pubmed: 31533976

Auteurs

Monica Wagner (M)

St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA. Electronic address: wagnerm@stjohns.edu.

Mateusz Rusiniak (M)

BESA, GmbH, Gräfelfing, 82166, Germany. Electronic address: mateusz.rusiniak@besa.de.

Eve Higby (E)

California State University, East Bay, 25800 Carlos Bee Blvd, Hayward, CA, 94542, USA. Electronic address: eve.higby@csueastbay.edu.

Kirill V Nourski (KV)

The University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA. Electronic address: kirill-nourski@uiowa.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH