Ferroelectricity in hafnia controlled via surface electrochemical state.


Journal

Nature materials
ISSN: 1476-4660
Titre abrégé: Nat Mater
Pays: England
ID NLM: 101155473

Informations de publication

Date de publication:
Sep 2023
Historique:
received: 21 07 2022
accepted: 26 06 2023
medline: 15 8 2023
pubmed: 15 8 2023
entrez: 14 8 2023
Statut: ppublish

Résumé

Ferroelectricity in binary oxides including hafnia and zirconia has riveted the attention of the scientific community due to the highly unconventional physical mechanisms and the potential for the integration of these materials into semiconductor workflows. Over the last decade, it has been argued that behaviours such as wake-up phenomena and an extreme sensitivity to electrode and processing conditions suggest that ferroelectricity in these materials is strongly influenced by other factors, including electrochemical boundary conditions and strain. Here we argue that the properties of these materials emerge due to the interplay between the bulk competition between ferroelectric and structural instabilities, similar to that in classical antiferroelectrics, coupled with non-local screening mediated by the finite density of states at surfaces and internal interfaces. Via the decoupling of electrochemical and electrostatic controls, realized via environmental and ultra-high vacuum piezoresponse force microscopy, we show that these materials demonstrate a rich spectrum of ferroic behaviours including partial-pressure-induced and temperature-induced transitions between ferroelectric and antiferroelectric behaviours. These behaviours are consistent with an antiferroionic model and suggest strategies for hafnia-based device optimization.

Identifiants

pubmed: 37580369
doi: 10.1038/s41563-023-01619-9
pii: 10.1038/s41563-023-01619-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1144-1151

Subventions

Organisme : U.S. Department of Energy (DOE)
ID : DE-SC0021118
Organisme : National Academy of Sciences of Ukraine (NASU)
ID : 1/20-Н (0120U102306)

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Boscke, T. S. et al. Phase transitions in ferroelectric silicon doped hafnium oxide. Appl. Phys. Lett. 99, 112904 (2011).
Muller, J. et al. Ferroelectric Zr
Auciello, O., Scott, J. F. & Ramesh, R. The physics of ferroelectric memories. Phys. Today 51, 22–27 (1998).
Crawford, J. C. Ferroelectric-piezoelectric random access memory. IEEE Trans. Electron Dev. 18, 951–958 (1971).
Tsymbal, E. Y. & Kohlstedt, H. Tunneling across a ferroelectric. Science 313, 181–183 (2006).
Zhuravlev, M. Y., Sabirianov, R. F., Jaswal, S. S. & Tsymbal, E. Y. Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005).
Ito, K. & Tsuchiya, H. Memory modes of ferroelectric field-effect transistors. Solid State Electron. 20, 529–537 (1977).
Rost, T. A., Lin, H. & Rabson, T. A. Ferroelectric switching of a field-effect transistor with a lithium niobate gate insulator. Appl. Phys. Lett. 59, 3654–3656 (1991).
Gajek, M. et al. Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296–302 (2007).
Hur, N. et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004).
Ferri, K. et al. Ferroelectrics everywhere: ferroelectricity in magnesium substituted zinc oxide thin films. J. Appl. Phys. 130, 044101 (2021).
Zhu, W. L. et al. Wake-up in Al
Hayden, J. et al. Ferroelectricity in boron-substituted aluminum nitride thin films. Phys. Rev. Mater. 5, 044412 (2021).
Yasuoka, S. et al. Effects of deposition conditions on the ferroelectric properties of (Al
Akiyama, M. et al. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 21, 593–596 (2009).
Fichtner, S., Wolff, N., Lofink, F., Kienle, L. & Wagner, B. AlScN: a III-V semiconductor based ferroelectric. J. Appl. Phys. 125, 114103 (2019).
Mikolajick, T., Schroeder, U. & Park, M. H. Special topic on ferroelectricity in hafnium oxide: materials and devices. Appl Phys. Lett. 118, 180402 (2021).
Materlik, R., Kunneth, C. & Kersch, A. The origin of ferroelectricity in Hf
Huan, T. D., Sharma, V., Rossetti, G. A. & Ramprasad, R. Pathways towards ferroelectricity in hafnia. Phys. Rev. B 90, 064111 (2014).
Reyes-Lillo, S. E., Garrity, K. F. & Rabe, K. M. Antiferroelectricity in thin-film ZrO
Schenk, T. et al. Complex internal bias fields in ferroelectric hafnium oxide. ACS Appl. Mater. Interfaces 7, 20224–20233 (2015).
Hoffmann, M. et al. Stabilizing the ferroelectric phase in doped hafnium oxide. J. Appl. Phys. 118, 072006 (2015).
Zhou, D. Y. et al. Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. 103, 192904 (2013).
Siannas, N. et al. Metastable ferroelectricity driven by depolarization fields in ultrathin Hf
Nukala, P. et al. Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices. Science 372, 630–635 (2021).
Batra, R., Huan, T. D., Jones, J. L., Rossetti, G. & Ramprasad, R. Factors favoring ferroelectricity in hafnia: a first-principles computational study. J. Phys. Chem. C 121, 4139–4145 (2017).
Martin, D. et al. Ferroelectricity in Si-doped HfO
Zhou, S., Zhang, J. & Rappe, A. M. Strain-induced antipolar phase in hafnia stabilizes robust thin-film ferroelectricity. Sci. Adv. 8, eadd5953 (2022).
Hyuk Park, M. et al. Evolution of phases and ferroelectric properties of thin Hf
Ihlefeld, J. F., Jaszewski, S. T. & Fields, S. S. A perspective on ferroelectricity in hafnium oxide: mechanisms and considerations regarding its stability and performance. Appl. Phys. Lett. 121, 240502 (2022).
Kim, H. J. et al. Grain size engineering for ferroelectric Hf
Garvie, R. C. The occurrence of metastable tetragonal zirconia as a crystallite size effect. J. Phys. Chem. 69, 1238–1243 (1965).
Materlik, R., Künneth, C. & Kersch, A. The origin of ferroelectricity in Hf
Cheema, S. S. et al. Emergent ferroelectricity in subnanometer binary oxide films on silicon. Science 376, 648–652 (2022).
Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012).
Vasudevan, R. K., Balke, N., Maksymovych, P., Jesse, S. & Kalinin, S. V. Ferroelectric or non-ferroelectric: why so many materials exhibit ‘ferroelectricity’ on the nanoscale. Appl. Phys. Rev. 4, 021302 (2017).
Fong, D. D. et al. Stabilization of monodomain polarization in ultrathin PbTiO
Wang, R. V. et al. Reversible chemical switching of a ferroelectric film. Phys. Rev. Lett. 102, 047601 (2009).
Yang, S. M. et al. Mixed electrochemical–ferroelectric states in nanoscale ferroelectrics. Nat. Phys. 13, 812–818 (2017).
Morozovska, A. N., Eliseev, E. A., Morozovsky, N. V. & Kalinin, S. V. Ferroionic states in ferroelectric thin films. Phys. Rev. B 95, 195413 (2017).
Fields, S. S. et al. Origin of ferroelectric phase stabilization via the clamping effect in ferroelectric hafnium zirconium oxide thin films. Adv. Electron. Mater. 8, 2200601 (2022).
Cheng, Y. et al. Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO
Jesse, S. et al. Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy. Nanotechnology 21, 405703 (2010).
Huey, B. D. et al. The importance of distributed loading and cantilever angle in piezo-force microscopy. J. Electroceram. 13, 287–291 (2004).
Jesse, S., Baddorf, A. P. & Kalinin, S. V. Dynamic behaviour in piezoresponse force microscopy. Nanotechnology 17, 1615–1628 (2006).
Jesse, S., Lee, H. N. & Kalinin, S. V. Quantitative mapping of switching behavior in piezoresponse force microscopy. Rev. Sci. Instrum. 77, 073702 (2006).
Kelley, K. P. et al. Oxygen vacancy injection as a pathway to enhancing electromechanical response in ferroelectrics. Adv. Mater. 34, 2106426 (2022).
Spasojevic, I., Verdaguer, A., Catalan, G. & Domingo, N. Effect of humidity on the writing speed and domain wall dynamics of ferroelectric domains. Adv. Electron. Mater. 8, 2100650 (2022).
Lomenzo, P. D., Richter, C., Mikolajick, T. & Schroeder, U. Depolarization as driving force in antiferroelectric hafnia and ferroelectric wake-up. ACS Appl. Electron. Mater. 2, 1583–1595 (2020).
Morozovska, A. N., Eliseev, E. A., Biswas, A., Morozovsky, N. V. & Kalinin, S. V. Effect of surface ionic screening on polarization reversal and phase diagrams in thin antiferroelectric films for information and energy storage. Phys. Rev. Appl. 16, 044053 (2021).
Doria, S. et al. Nanoscale mapping of oxygen vacancy kinetics in nanocrystalline samarium doped ceria thin films. Appl. Phys. Lett. 103, 171605 (2013).
Kumar, A. et al. Variable temperature electrochemical strain microscopy of Sm-doped ceria. Nanotechnology 24, 145401 (2013).

Auteurs

Kyle P Kelley (KP)

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA. kelleykp@ornl.gov.

Anna N Morozovska (AN)

Institute of Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine.

Eugene A Eliseev (EA)

Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Kyiv, Ukraine.

Yongtao Liu (Y)

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Shelby S Fields (SS)

Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, USA.

Samantha T Jaszewski (ST)

Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, USA.

Takanori Mimura (T)

Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, USA.

Sebastian Calderon (S)

Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.

Elizabeth C Dickey (EC)

Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.

Jon F Ihlefeld (JF)

Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, USA.
Charles L. Brown Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA.

Sergei V Kalinin (SV)

Materials Science and Engineering Department, University of Tennessee, Knoxville, Knoxville, TN, USA. sergei2@utk.edu.
Joint Institute for Advanced Materials, Department of Materials Science and Engineering, University of Tennessee, Knoxville, Knoxville, TN, USA. sergei2@utk.edu.

Classifications MeSH