Certification of qubits in the prepare-and-measure scenario with large input alphabet and connections with the Grothendieck constant.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
14 Aug 2023
Historique:
received: 06 11 2022
accepted: 26 07 2023
medline: 15 8 2023
pubmed: 15 8 2023
entrez: 14 8 2023
Statut: epublish

Résumé

We address the problem of testing the quantumness of two-dimensional systems in the prepare-and-measure (PM) scenario, using a large number of preparations and a large number of measurement settings, with binary outcome measurements. In this scenario, we introduce constants, which we relate to the Grothendieck constant of order 3. We associate them with the white noise resistance of the prepared qubits and to the critical detection efficiency of the measurements performed. Large-scale numerical tools are used to bound the constants. This allows us to obtain new bounds on the minimum detection efficiency that a setup with 70 preparations and 70 measurement settings can tolerate.

Identifiants

pubmed: 37580385
doi: 10.1038/s41598-023-39529-0
pii: 10.1038/s41598-023-39529-0
pmc: PMC10425422
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

13200

Subventions

Organisme : QuantERA
ID : 2019-2.1.7-ERA-NET-2020-00003

Informations de copyright

© 2023. Springer Nature Limited.

Références

Phys Rev Lett. 2015 Jul 10;115(2):020501
pubmed: 26207454
Phys Rev A Gen Phys. 1989 Oct 15;40(8):4277-4281
pubmed: 9902666
Phys Rev Lett. 2014 Oct 17;113(16):160402
pubmed: 25361238
Phys Rev Lett. 2013 Dec 13;111(24):240404
pubmed: 24483632
Phys Rev Lett. 2014 Apr 11;112(14):140401
pubmed: 24765923
Phys Rev Lett. 2007 Apr 6;98(14):140402
pubmed: 17501251
Phys Rev Lett. 2010 Dec 3;105(23):230501
pubmed: 21231438
Phys Rev Lett. 2013 Apr 12;110(15):150501
pubmed: 25167234
Phys Rev Lett. 2019 Feb 22;122(7):070501
pubmed: 30848630

Auteurs

Péter Diviánszky (P)

MTA Atomki Lendület Quantum Correlations Research Group, Institute for Nuclear Research, P.O. Box 51, Debrecen, H-4001, Hungary.

István Márton (I)

MTA Atomki Lendület Quantum Correlations Research Group, Institute for Nuclear Research, P.O. Box 51, Debrecen, H-4001, Hungary.

Erika Bene (E)

MTA Atomki Lendület Quantum Correlations Research Group, Institute for Nuclear Research, P.O. Box 51, Debrecen, H-4001, Hungary.

Tamás Vértesi (T)

MTA Atomki Lendület Quantum Correlations Research Group, Institute for Nuclear Research, P.O. Box 51, Debrecen, H-4001, Hungary. tvertesi@atomki.hu.

Classifications MeSH