Stability evaluation of rock pillar between twin tunnels using the YAI.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
14 Aug 2023
Historique:
received: 11 04 2023
accepted: 05 08 2023
medline: 15 8 2023
pubmed: 15 8 2023
entrez: 14 8 2023
Statut: epublish

Résumé

The stability of rock pillar is crucial for ensuring the construction safety of twin tunnels with small clearance, especially when transitioning from the traditional left-right tunnel layouts to the up-down configurations due to complex and variable site constraints. However, there are limited researches on the evaluation and comparative study of the stability of these two types of rock pillars in twin tunnels. This paper introduces the yield approach index (YAI) as a measure to assess the stability of rock pillar in twin tunnels with small clearance, and various influencing factors including side pressure coefficient (SPC), stress release rate (SRR), and the thickness of rock pillar (characterised by the ratio of rock pillar thickness to tunnel diameter, RPT/TD) are considered in the analysis. The study compares and analyzes the stability differences of the rock pillar in different situations. It is observed that the two sides of up-down tunnels pose a higher risk while the rock pillar in the left-right configuration being the most vulnerable. The stability of the rock pillar between the up-down tunnels is significantly higher than that of the left-right tunnels under similar conditions. Moreover, the up-down tunnels exhibit greater sensitivity to SPC, whereas the left-right tunnels are more sensitive to SRR. Additionally, the study reveals that increasing the RPT/TD can effectively improve the stability of the rock pillar within a specific range (1/4 to 2/3). The research method and obtained results of this paper can provide some important references for the stability evaluation and design of twin tunnels with small clearance.

Identifiants

pubmed: 37580482
doi: 10.1038/s41598-023-40167-9
pii: 10.1038/s41598-023-40167-9
pmc: PMC10425359
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

13187

Subventions

Organisme : National Natural Science Foundation of China
ID : 52178395

Informations de copyright

© 2023. Springer Nature Limited.

Références

Lu, X. L., Zhou, Y. C., Huang, M. S. & Li, F. D. Computation of the minimum limit support pressure for the shield tunnel face stability under seepage condition. Int. J. Civ. Eng. 15, 849–863. https://doi.org/10.1007/s40999-016-0116-0 (2017).
doi: 10.1007/s40999-016-0116-0
Di, Q. G., Li, P. F., Zhang, M. J., Zhang, W. J. & Wang, X. Y. Analysis of face stability for tunnels under seepage flow in the saturated ground. Ocean Eng. 266, 112674. https://doi.org/10.1016/j.oceaneng.2022.112674 (2022).
doi: 10.1016/j.oceaneng.2022.112674
Chen, D. X., Wang, L. G., Sun, C., Jia, C. Z. & Zheng, L. X. Investigation of the support constraint effect and failure instability law of tunnels constructed using the New Austrian tunneling method. Sci. Rep. 12(1), 5811. https://doi.org/10.1038/s41598-022-09826-1 (2022).
doi: 10.1038/s41598-022-09826-1 pubmed: 35388131 pmcid: 8987082
Di, Q. G., Li, P. F., Zhang, M. J. & Wu, J. Influence of permeability anisotropy of seepage flow on the tunnel face stability. Undergr. Space 8, 1–14. https://doi.org/10.1016/j.undsp.2022.04.009 (2023).
doi: 10.1016/j.undsp.2022.04.009
Shiau, J. & Al-Asadi, F. Stability factors F
doi: 10.1061/(ASCE)GM.1943-5622.0002264
Di, Q. G. et al. Three-dimensional theoretical analysis of seepage field in front of shield tunnel face. Undergr. Space 7(4), 528–542. https://doi.org/10.1016/j.undsp.2021.11.006 (2022).
doi: 10.1016/j.undsp.2021.11.006
Ministry of Transport of the People’s Republic of China. Code for Design of Road Tunnel (JTG D70-2004), (2004).
Zhao, B. Y. & Ma, Z. Y. Influence of cavern spacing on the stability of large cavern groups in a hydraulic power station. Int. J. Rock Mech. Min. Sci. 46(3), 506–513. https://doi.org/10.1016/j.ijrmms.2008.10.002 (2009).
doi: 10.1016/j.ijrmms.2008.10.002
Mortazavi, A., Hassani, F. P. & Shabani, M. A numerical investigation of rock pillar failure mechanism in underground openings. Comput. Geotech. 36(5), 691–697. https://doi.org/10.1016/j.compgeo.2008.11.004 (2009).
doi: 10.1016/j.compgeo.2008.11.004
Mohamad, H., Soga, K., Bennett, P. J., Mair, R. J. & Lim, C. S. Monitoring twin tunnel interaction using distributed optical fiber strain measurements. J. Geotech. Geoenviron. Eng. 138(8), 957–967. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000656 (2012).
doi: 10.1061/(ASCE)GT.1943-5606.0000656
Do, N. A., Dias, D., Oreste, P. & Djeran-Maigre, I. 2D numerical investigations of twin tunnel interaction. Geomech. Eng. 6(3), 263–275. https://doi.org/10.12989/gae.2014.6.3.263 (2014).
doi: 10.12989/gae.2014.6.3.263
Zhang, W. G. & Goh, A. T. C. Regression models for estimating ultimate and serviceability limit states of underground rock caverns. Eng. Geol. 188, 68–76. https://doi.org/10.1016/j.enggeo.2015.01.021 (2015).
doi: 10.1016/j.enggeo.2015.01.021
Govindasamy, D. et al. Assessment of the twin-tunnel interaction mechanism in Kenny Hill formation using contraction ratio method. Indian Geotech. J. 50(5), 825–837. https://doi.org/10.1007/s40098-020-00411-9 (2020).
doi: 10.1007/s40098-020-00411-9
Gong, J.W. Study on construction mechanical behavior of highway tunnel with large section and small spacing. Ph.D. Thesis, Tongji Univ. (2008).
Kong, X. X., Xia, C. C., Qiu, Y. L., Zhang, L. Y. & Gong, J. W. Study of construction mechanical behavior of parallel-small spacing metro tunnels excavated by shield method and cross diaphragm (CRD) method in loess region. Rock Soil Mech. 32(2), 516–524. https://doi.org/10.16285/j.rsm.2011.02.012 (2011).
doi: 10.16285/j.rsm.2011.02.012
Zhang, H. et al. The construction mechanical behavior and deformation characteristics of lining structure: a case study of large-span and small-clearance tunnels. Structures 45, 2007–2021. https://doi.org/10.1016/j.istruc.2022.10.025 (2022).
doi: 10.1016/j.istruc.2022.10.025
Kumar, J. & Jain, H. Elasto-plastic ground settlement response and stability of single and twin circular unsupported and supported tunnels. Transp. Geotech. 30, 100620. https://doi.org/10.1016/j.trgeo.2021.100620 (2021).
doi: 10.1016/j.trgeo.2021.100620
Chen, Q. N., Zhao, L. J., Xie, X. Y., He, C. B. & Cao, Y. J. Reasonable distance for super-large section neighborhood tunnel of granite residual soil with shallow-buried bias. J. Cent. South Univ. 46(9), 3475–3480. https://doi.org/10.11817/j.issn.1672-7207.2015.09.042 (2015).
doi: 10.11817/j.issn.1672-7207.2015.09.042
Kannangara, K. P. M., Ding, Z. & Zhou, W. H. Surface settlements induced by twin tunneling in silty sand. Undergr. Space 7(1), 58–75. https://doi.org/10.1016/j.undsp.2021.05.002 (2022).
doi: 10.1016/j.undsp.2021.05.002
Zheng, G. et al. Relating twin-tunnelling-induced settlement to changes in the stiffness of soil. Acta Geotech. 18, 469–482. https://doi.org/10.1007/s11440-022-01541-5 (2023).
doi: 10.1007/s11440-022-01541-5
Wei, P. H. Support form and construction sequence for soft rock tunnels with small spacing, high stress and deformation. Mod. Tunn. Technol. 55(3), 167–175. https://doi.org/10.13807/j.cnki.mtt.2018.03.023 (2018).
doi: 10.13807/j.cnki.mtt.2018.03.023
Li, C. G., Zhao, J. B., Hu, J., Ju, X. Y. & Tian, X. X. Numerical analysis of reasonable distance between tunnel faces for twin tunnel. 6th Int. Conf. Hydraul. Civ. Eng. https://doi.org/10.1088/1755-1315/643/1/012028 (2020).
doi: 10.1088/1755-1315/643/1/012028
Wu, F. Y. et al. Discussion on reasonable clear spacing of twin-tunnels in weak surrounding rock: Analytical solution and numerical analysis. KSCE J. Civ. Eng. 26(5), 2428–2442. https://doi.org/10.1007/s12205-022-0898-3 (2022).
doi: 10.1007/s12205-022-0898-3
Torabi-Kaveh, M. & Sarshari, B. Predicting convergence rate of Namaklan twin tunnels using machine learning methods. Arab. J. Sci. Eng. 45(5), 3761–3780. https://doi.org/10.1007/s13369-019-04239-1 (2020).
doi: 10.1007/s13369-019-04239-1
Mahmutoğlu, Y. Surface subsidence induced by twin subway tunnelling in soft ground conditions in Istanbul. Bull. Eng. Geol. Environ. 70(1), 115–131. https://doi.org/10.1007/s10064-010-0289-8 (2011).
doi: 10.1007/s10064-010-0289-8
Daraei, A. & Zare, S. A new multi-graph approach for selecting the sequential excavation method of civil tunnels. Tunn. Undergr. Space Technol. 91, 102999. https://doi.org/10.1016/j.tust.2019.102999 (2019).
doi: 10.1016/j.tust.2019.102999
Daraei, A., Herki, B. M., Sherwani, A. F. H. & Zare, S. Rehabilitation of portal subsidence of Heybat Sultan twin tunnels: Selection of shotcrete or geogrid alternatives. Int. J. Geosynth. Gr. Eng. 4, 15. https://doi.org/10.1007/s40891-018-0132-z (2018).
doi: 10.1007/s40891-018-0132-z
Li, Y. et al. Influence of undercrossing tunnel excavation on the settlement of a metro station in Dalian. Bull. Eng. Geol. Environ. 80, 4673–4687. https://doi.org/10.1007/s10064-021-02128-2 (2021).
doi: 10.1007/s10064-021-02128-2
Lai, H. P., Wang, T. T., Kang, Z., Chen, R. & Hong, Q. Y. Theoretical method of chamber pressure for EPB shield tunneling under-crossing existing metro tunnels. KSCE J. Civ. Eng. 25, 2725–2736. https://doi.org/10.1007/s12205-021-0755-9 (2021).
doi: 10.1007/s12205-021-0755-9
Lin, X. T., Chen, R. P., Wu, H. N. & Cheng, H. Z. Deformation behaviors of existing tunnels caused by shield tunneling undercrossing with oblique angle. Tunn. Undergr. Space Technol. 89, 78–90. https://doi.org/10.1016/j.tust.2019.03.021 (2019).
doi: 10.1016/j.tust.2019.03.021
Zhang, H. J. et al. Analysis on the influence of dismantling temporary lining of closely-undercrossing subway. Geotech. Geol. Eng. 41, 3189–3202. https://doi.org/10.1007/s10706-023-02452-2 (2023).
doi: 10.1007/s10706-023-02452-2
Zheng, H. B., Li, P. F., Ma, G. W. & Zhang, Q. B. Experimental investigation of mechanical characteristics for linings of twins tunnels with asymmetric cross-section. Tunn. Undergr. Space Technol. 119, 104209. https://doi.org/10.1016/j.tust.2021.104209 (2022).
doi: 10.1016/j.tust.2021.104209
Fang, Q. et al. Centrifuge modelling of tunnelling below existing twin tunnels with different types of support. Undergr. Space 7(6), 1125–1138. https://doi.org/10.1016/j.undsp.2022.02.007 (2022).
doi: 10.1016/j.undsp.2022.02.007
Shiau, J. & Fadhil, A. A. Twin tunnels stability factors F
doi: 10.1007/s10706-020-01495-z
Jiang, Q. et al. Failure performance of 3DP physical twin-tunnel model and corresponding safety factor evaluation. Rock Mech. Rock Eng. 54(1), 109–128. https://doi.org/10.1007/s00603-020-02244-7 (2021).
doi: 10.1007/s00603-020-02244-7
Lyu, H. M., Shen, S. L., Zhou, A. N. & Chen, K. L. Calculation of pressure on the shallow-buried twin-tunnel in layered strata. Tunn. Undergr. Space Technol. 103, 103465. https://doi.org/10.1016/j.tust.2020.103465 (2020).
doi: 10.1016/j.tust.2020.103465
Fan, S. Y., Song, Z. P., Xu, T., Wang, K. M. & Zhang, Y. W. Tunnel deformation and stress response under the bilateral foundation pit construction: A case study. Arch. Civil Mech. Eng. 21, 109. https://doi.org/10.1007/s43452-021-00259-7 (2021).
doi: 10.1007/s43452-021-00259-7
Zhang, C. Q., Zhou, H. & Feng, X. T. An index for estimating the stability of brittle surrounding rock mass: Fai and its engineering application. Rock Mech. Rock Eng. 44, 401–414. https://doi.org/10.1007/s00603-011-0150-9 (2011).
doi: 10.1007/s00603-011-0150-9
Shi, Y. F. et al. Study on dynamic response and long-term settlement of water-saturated weathered soft rocks at the base of subway tunnels. Mod. Tunn. Technol. 59, 86–95. https://doi.org/10.13807/j.cnki.mt.2022.02.011 (2022).
doi: 10.13807/j.cnki.mt.2022.02.011
Qiu, J. L. et al. Response mechanism of metro tunnel structure under local collapse in loess strata. Environ. Earth Sci. 81, 164. https://doi.org/10.1007/s12665-022-10256-5 (2022).
doi: 10.1007/s12665-022-10256-5
Wang, H. Y., Chen, S. M. & Yan, Z. X. Principles of Dynamic Design of Underground Engineering (Chemical Industry Press, 2008).

Auteurs

Huijian Zhang (H)

Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, School of Civil Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

Gongning Liu (G)

Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, School of Civil Engineering, Southwest Jiaotong University, Chengdu, 610031, China. 2995484603@qq.com.

Weixiong Liu (W)

Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, School of Civil Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

Zekun Chen (Z)

Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, School of Civil Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

Zengrun Miao (Z)

China Railway Construction Bridge Engineering Bureau Group Co., Ltd., Tianjin, 300300, China.

Qiuyang Liu (Q)

Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, School of Civil Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

Classifications MeSH