A new phosphate purification method for igneous weathering profiles.
Journal
Rapid communications in mass spectrometry : RCM
ISSN: 1097-0231
Titre abrégé: Rapid Commun Mass Spectrom
Pays: England
ID NLM: 8802365
Informations de publication
Date de publication:
30 Sep 2023
30 Sep 2023
Historique:
revised:
26
06
2023
received:
18
02
2023
accepted:
27
06
2023
medline:
15
8
2023
pubmed:
15
8
2023
entrez:
14
8
2023
Statut:
ppublish
Résumé
The oxygen isotope composition of phosphate (δ Our phosphate purification method includes two steps of cation exchange resin treatment separated by a step of calcium phosphate precipitation (R-Ca-R method). In addition, the silver phosphate precipitation in our procedure is featured by slow evaporation to crystallization until the appearance of ammonium nitrate or silver nitrate crystals. We evaluated our methods on weathered and pristine igneous rocks, phosphorite rocks, KH Our purification method converted over 99.9% phosphate in solution to calcium phosphate, which can be easily decalcified by cation resin. The improved silver phosphate precipitation method produced high phosphate yields (97.1%-99.5%) and retained original δ We developed a new phosphate purification method that is applicable to phosphate extraction in igneous rocks and IWPs. We also proposed a reliable indicator for the termination of silver phosphate precipitation. Our method can achieve high phosphate yield and reproducible δ
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e9601Subventions
Organisme : National Key Research and Development Program of China
ID : 2022YFF0800303
Organisme : National Natural Science Foundation of China
ID : 41906046
Organisme : National Natural Science Foundation of China
ID : 42072036
Organisme : National Natural Science Foundation of China
ID : 42173001
Organisme : National Natural Science Foundation of China
ID : 42192501
Organisme : Fundamental Research Funds for the Central Universities
ID : 0206/14380150
Organisme : Fundamental Research Funds for the Central Universities
ID : 0206/14380174
Organisme : Fundamental Research Funds for the Central Universities
ID : 0206/14380185
Organisme : Chinese Academy of Sciences
ID : XDB26000000
Informations de copyright
© 2023 John Wiley & Sons Ltd.
Références
Lecuyer C, Grandjean P, Sheppard SMF. Oxygen isotope exchange between dissolved phosphate and water at temperatures ≤135°C: inorganic versus biological fractionations. Geochim Cosmochim Acta. 1999;63(6):855-862. doi:10.1016/S0016-7037(99)00096-4
O'Neil JR, Vennemann TW, McKenzie WF. Effects of speciation on equilibrium fractionations and rates of oxygen isotope exchange between (PO4)aq and H2O. Geochim Cosmochim Acta. 2003;67(17):3135-3144. doi:10.1016/S0016-7037(02)00970-5
Taylor HP Jr, Epstein S. Relationship between O18/O16 ratios in coexisting minerals of igneous and metamorphic rocks: part 1: principles and experimental results. GSA Bull. 1962;73(4):461-480. doi:10.1130/0016-7606(1962)73[461:RBORIC]2.0.CO;2
Taylor HP. The oxygen isotope geochemistry of igneous rocks. Contrib Mineral Petrol. 1968;19(1):1-71. doi:10.1007/BF00371729
Colman AS, Blake RE, Karl DM, Fogel ML, Turekian KK. Marine phosphate oxygen isotopes and organic matter remineralization in the oceans. Proc Natl Acad Sci. 2005;102(37):13023-13028. doi:10.1073/pnas.0506455102
Kolodny Y, Luz B, Navon O. Oxygen isotope variations in phosphate of biogenic apatites, I. fish bone apatite-rechecking the rules of the game. Earth Planet Sci Lett. 1983;64(3):398-404. doi:10.1016/0012-821X(83)90100-0
Blake RE, O'Neil JR, Garcia GA. Oxygen isotope systematics of biologically mediated reactions of phosphate: I. microbial degradation of organophosphorus compounds. Geochim Cosmochim Acta. 1997;61(20):4411-4422. doi:10.1016/S0016-7037(97)00272-X
Angert A, Weiner T, Mazeh S, Sternberg M. Soil phosphate stable oxygen isotopes across rainfall and bedrock gradients. Environ Sci Technol. 46(4):2156-2162.
Goldhammer T, Max T, Brunner B, Einsiedl F, Zabel M. Marine sediment pore-water profiles of phosphate d18O using a refined micro-extraction. Limnol Oceanogr: Methods. 2011;9(4):110-120.
Blake RE, Chang SJ, Lepland A. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean Ocean. Nature. 2010;464(7291):1029-1032. doi:10.1038/nature08952
Trotter JA, Williams IS, Barnes CR, L¨¦cuyer C, Nicoll RS. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science. 2008;321(5888):550-554. doi:10.1126/science.1155814
Wei Z. Oxygen isotope geochemistry of phosphate from igneous rock weathering profiles. LSU Master's Theses. 2016; 4552.
Boyd DW. Oxygen isotope composition of phosphate along vertical weathering profiles that developed on igneous rocks: testing modern analogues for identifying terrestrial life in ancient Paleosols. LSU Master's Theses. 2014; 3863.
LaPorte DF, Holmden C, Patterson WP, Prokopiuk T, Eglington BM. Oxygen isotope analysis of phosphate: improved precision using TC/EA CF-IRMS. J Mass Spectrom. 2009;44(6):879-890. doi:10.1002/jms.1549
Joachimski MM, Breisig S, Buggisch W, et al. Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth Planet Sci Lett. 2009;284(3):599-609. doi:10.1016/j.epsl.2009.05.028
Bassett D, Macleod KG, Miller JF, Ethington RL. Oxygen isotopic composition of biogenic phosphate and the temperature of early ordovician seawater. Palaios. 2007;22(1):98-103. doi:10.2110/palo.2005.p05-089r
Porder S, Ramachandran S. The phosphorus concentration of common rocks-A potential driver of ecosystem P status. Plant and Soil. 2013;367(1):41-55. doi:10.1007/s11104-012-1490-2
Karl DM, Tien G. Magic - a sensitive and precise method for measuring dissolved phosphorus in aquatic environments. Limnol Oceanogr. 1992;37(1):105-116. doi:10.4319/lo.1992.37.1.0105
Liu Y, Wang J, Yang H, Jiang S, Jin Z, Chen J. Method for analyzing the oxygen isotope composition of HCl-extractable inorganic phosphate in sediments and soils. Appl Geochem. 2021;130:104978. doi:10.1016/j.apgeochem.2021.104978
Liu Y, Wang J, Chen J, Jin Z, Ding S, Yang X. Method for phosphate oxygen isotopes analysis in water based on in situ enrichment, elution, and purification. J Environ Manage. 2021;279:111618. doi:10.1016/j.jenvman.2020.111618
Tamburini F, Bernasconi SM, Angert A, Weiner T, Frossard E. A method for the analysis of the δ18O of inorganic phosphate extracted from soils with HCl. Eur J Soil Sci. 2010;61(6):1025-1032. doi:10.1111/j.1365-2389.2010.01290.x
McLaughlin K, Silva S, Kendall C, Stuart-Williams H, Paytan A. A precise method for the analysis of δ18O of dissolved inorganic phosphate in seawater. Limnol Oceanogr: Methods. 2004;2(7):202-212. doi:10.4319/lom.2004.2.202
Coulson AB, Kohn MJ, Shirley MH, Joyce WG, Barrick RE. Phosphate-oxygen isotopes from marine turtle bones: ecologic and paleoclimatic applications. Palaeogeogr Palaeoclimatol Palaeoecol. 2008;264(1-2):78-84. doi:10.1016/j.palaeo.2008.04.008
Sun Y, Joachimski MM, Wignall PB, et al. Lethally hot temperatures during the early Triassic greenhouse. Science. 2012;338(6105):366-370. doi:10.1126/science.1224126
Ling H, Jiang S, Feng H, Chen Y, Chen J, Yang J. Oxygen isotope geochemistry of phosphorite and dolomite and palaeo-ocean temperature estimation: a case study from the Neoproterozoic Doushantuo formation, Guizhou Province, South China. Prog Nat Sci. 2004;14(1):77-84. doi:10.1080/10020070412331343181
Shabaga BM, Gough H, Fayek M, Hoppa RD. A simplified silver phosphate extraction method for oxygen isotope analysis of bioapatite. Rapid Commun Mass Spectrom. 2018;32(15):1237-1242. doi:10.1002/rcm.8149
Crowson RA, Showers WJ, Wright EK, Hoering TC. Preparation of phosphate samples for oxygen isotope analysis. Anal Chem. 1991;63(20):2397-2400. doi:10.1021/ac00020a038
Sun M, Jaisi DP. Distribution of inositol phosphates in animal feed grains and excreta: distinctions among isomers and phosphate oxygen isotope compositions. Plant and Soil. 2018;430(1):291-305. doi:10.1007/s11104-018-3723-5
Tudge AP. A method of analysis of oxygen isotopes in orthophosphate-Its use in the measurement of paleotemperatures. Geochim Cosmochim Acta. 1960;18(1):81-93. doi:10.1016/0016-7037(60)90019-3
Vennemann TW, Fricke HC, Blake RE, O'Neil JR, Colman A. Oxygen isotope analysis of phosphates: a comparison of techniques for analysis of Ag3PO4. Chem Geol. 2002;185(3):321-336. doi:10.1016/S0009-2541(01)00413-2
Firsching FH. Precipitation of silver phosphate from homogenous solution. Anal Chem. 1961;33(7):873-874. doi:10.1021/ac60175a018
Dettman DL, Kohn MJ, Quade J, Ryerson FJ, Ojha TP, Hamidullah S. Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y. Geology. 2001;29(1):31-34. doi:10.1130/0091-7613(2001)029<0031:SSIEFA>2.0.CO;2
Lécuyer C. Chapter 22-oxygen isotope analysis of phosphate. In: de Groot PA, ed. Handbook of Stable Isotope Analytical Techniques. Elsevier; 2004:482-496.
Stephan E. Oxygen isotope analysis of animal bone phosphate: method refinement, influence of consolidants, and reconstruction of palaeotemperatures for Holocene sites. J Archaeol Sci. 2000;27(6):523-535. doi:10.1006/jasc.1999.0480
Griffin JM, Montañez IP, Matthews JA, Bates S, Lyons TW. A refined protocol for δ18OPO4 analysis of conodont bioapatite. Chem Geol. 2015;417:11-20. doi:10.1016/j.chemgeo.2015.08.025
Fogg DN, Wilkinson NT. The colorimetric determination of phosphorus. Analyst. 1958;83(988):406-414. doi:10.1039/an9588300406
Quinton PC, MacLeod KG. Oxygen isotopes from conodont apatite of the midcontinent, US: implications for late Ordovician climate evolution. Palaeogeogr Palaeoclimatol Palaeoecol. 2014;404:57-66. doi:10.1016/j.palaeo.2014.03.036