Improving climate and biodiversity outcomes through restoration of forest integrity.

biodiversidad biodiversity bosque clima climate forest integridad integrity prioritization priorización recovery recuperación restauración restoration

Journal

Conservation biology : the journal of the Society for Conservation Biology
ISSN: 1523-1739
Titre abrégé: Conserv Biol
Pays: United States
ID NLM: 9882301

Informations de publication

Date de publication:
Dec 2023
Historique:
revised: 30 05 2023
received: 15 02 2023
accepted: 01 06 2023
medline: 11 12 2023
pubmed: 15 8 2023
entrez: 15 8 2023
Statut: ppublish

Résumé

Targeting degraded areas in forested landscapes for restoration could deliver rapid climate mitigation and biodiversity conservation, improve resilience of forested lands to future climate change, and potentially reduce the trade-offs between nature recovery and agriculture. Although the importance of forest restoration for climate mitigation is acknowledged, current estimates of its climate mitigation potential may be underestimated because they focus predominantly on reforesting cleared areas. We built on recent analyses of forest integrity and unrealized forest biomass potential to examine the potential for restoring the integrity of degraded forests. There are over 1.5 billion ha of forests worldwide that retain 50-80% of their potential biomass. Prioritizing restoration in these areas could deliver rapid biodiversity and climate mitigation benefits, relative to restoring forest on cleared land. We applied a spatial planning approach to demonstrate how restoration interventions can be targeted to support the conservation of high-integrity forest, a potential pathway to the delivery of the 30×30 goal of the Convention on Biodiversity's Global Biodiversity Framework. Mejoras en los resultados climáticos y de biodiversidad mediante la restauración de la integridad forestal Resumen El enfoque en las áreas degradadas de los paisajes boscosos para la restauración podría generar una mitigación climática y conservación de la biodiversidad aceleradas, mejorar la resiliencia de los terrenos boscosos ante el cambio climático en el futuro y potencialmente reducir las compensaciones entre la recuperación de la naturaleza y la agricultura. Aunque se reconoce la importancia de la restauración forestal para la mitigación climática, las estimaciones actuales de su potencial de mitigación podrían estar subestimados pues se enfocan principalmente en reforestar áreas despejadas. Partimos de los análisis recientes de la integridad forestal y el potencial sin realizar de la biomasa forestal para analizar el potencial para restaurar la integridad de los bosques degradados. Hay más de 1.5 mil millones de hectáreas de bosque en todo el mundo que retienen el 50-80% de su biomasa potencial. Si se prioriza la restauración en estas áreas, se podrían generar beneficios acelerados de mitigación climática y de la biodiversidad en relación a la reforestación en áreas despejadas. Aplicamos un enfoque de planeación espacial para demostrar cómo las intervenciones de restauración pueden enfocarse para auxiliar en la conservación de bosques de gran integridad, una vía potencial para lograr el objetivo 30×30 del Marco Global para la Biodiversidad del Convenio sobre la Diversidad Biológica.

Autres résumés

Type: Publisher (spa)
Mejoras en los resultados climáticos y de biodiversidad mediante la restauración de la integridad forestal Resumen El enfoque en las áreas degradadas de los paisajes boscosos para la restauración podría generar una mitigación climática y conservación de la biodiversidad aceleradas, mejorar la resiliencia de los terrenos boscosos ante el cambio climático en el futuro y potencialmente reducir las compensaciones entre la recuperación de la naturaleza y la agricultura. Aunque se reconoce la importancia de la restauración forestal para la mitigación climática, las estimaciones actuales de su potencial de mitigación podrían estar subestimados pues se enfocan principalmente en reforestar áreas despejadas. Partimos de los análisis recientes de la integridad forestal y el potencial sin realizar de la biomasa forestal para analizar el potencial para restaurar la integridad de los bosques degradados. Hay más de 1.5 mil millones de hectáreas de bosque en todo el mundo que retienen el 50-80% de su biomasa potencial. Si se prioriza la restauración en estas áreas, se podrían generar beneficios acelerados de mitigación climática y de la biodiversidad en relación a la reforestación en áreas despejadas. Aplicamos un enfoque de planeación espacial para demostrar cómo las intervenciones de restauración pueden enfocarse para auxiliar en la conservación de bosques de gran integridad, una vía potencial para lograr el objetivo 30×30 del Marco Global para la Biodiversidad del Convenio sobre la Diversidad Biológica.

Identifiants

pubmed: 37581508
doi: 10.1111/cobi.14163
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e14163

Subventions

Organisme : Trillion Trees & Restore Our Planet

Informations de copyright

© 2023 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.

Références

Antongiovanni, M., Venticinque, E. M., Tambosi, L. R., Matsumoto, M., Metzger, J. P., & Fonseca, C. R. (2022). Restoration priorities for Caatinga dry forests: Landscape resilience, connectivity and biodiversity value. Journal of Applied Ecology, 59, 2287-2298.
Austin, K. G., Baker, J. S., Sohngen, B. L., Wade, C. M., Daigneault, A., Ohrel, S. B., Ragnauth, S., & Bean, A. (2020). The economic costs of planting, preserving, and managing the world's forests to mitigate climate change. Nature Communications, 11, 5946.
Balshi, M. S., Mcguire, A. D., Duffy, P., Flannigan, M., Kicklighter, D. W., & Melillo, J. (2009). Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century. Global Change Biology, 15, 1491-1510.
Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C. M., & Crowther, T. W. (2019). The global tree restoration potential. Science, 365, 76-79.
Berry, N. J., Phillips, O. L., Lewis, S. L., Hill, J. K., Edwards, D. P., Tawatao, N. B., Ahmad, N., Magintan, D., Khen, C. V., Maryati, M., Ong, R. C., & Hamer, K. C. (2010). The high value of logged tropical forests: Lessons from northern Borneo. Biodiversity and Conservation, 19, 985-997.
Buchhorn, M., Lesiv, M., Tsendbazar, N.-E., Herold, M., Bertels, L., & Smets, B. (2020). Copernicus Global Land Cover Layers-Collection 2. Remote Sensing, 12, 1044.
Carver, S. J. (1991). Integrating multi-criteria evaluation with geographical information systems. International Journal of Geographical Information Systems, 5, 321-339.
Castillo-Mandujano, J., & Smith-Ramírez, C. (2022). The need for holistic approach in the identification of priority areas to restore: A review. Restoration Ecology, 30(8), e13637. https://doi.org/10.1111/rec.13637
Cook-Patton, S. C., Leavitt, S. M., Gibbs, D., Harris, N. L., Lister, K., Anderson-Teixeira, K. J., Briggs, R. D., Chazdon, R. L., Crowther, T. W., Ellis, P. W., Griscom, H. P., Herrmann, V., Holl, K. D., Houghton, R. A., Larrosa, C., Lomax, G., Lucas, R., Madsen, P., Malhi, Y., … Griscom, B. W. (2020). Mapping carbon accumulation potential from global natural forest regrowth. Nature, 585, 545-550.
Crouzeilles, R., & Curran, M. (2016). Which landscape size best predicts the influence of forest cover on restoration success? A global meta-analysis on the scale of effect. Journal of Applied Ecology, 53, 440-448.
Deere, N. J., Guillera-Arroita, G., Swinfield, T., Milodowski, D. T., Coomes, D. A., Bernard, H., Reynolds, G., Davies, Z. G., & Struebig, M. J. (2020). Maximizing the value of forest restoration for tropical mammals by detecting three-dimensional habitat associations. Proceedings of the National Academy of Sciences of the United States of America, 117, 26254-26262.
Delevaux, J. M. S., & Stamoulis, K. A. (2022). Prioritizing forest management actions to benefit marine habitats in data-poor regions. Conservation Biology, 36, e13792. https://doi.org/10.1111/cobi.13792
Descals, A., Wich, S., Meijaard, E., Gaveau, D. L. A., Peedell, S., & Szantoi, Z. (2021). High-resolution global map of smallholder and industrial closed-canopy oil palm plantations. Earth System Science Data, 13, 1211-1231. https://doi.org/10.5194/essd-13-1211-2021
Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E. C., Jones, B., Barber, C. V., Hayes, R., Kormos, C., Martin, V., Crist, E., … Saleem, M. (2017). An ecoregion-based approach to protecting half the terrestrial realm. Bioscience, 67, 534-545.
Ding, H., Faruqi, S., Wu, A., Altamirano, J. C., Ortega, A. A., Verdone, M., Cristales, R. Z., Chazdon, R., & Vergara, W. (2017). Roots of prosperity: The economics and finance of restoring land. World Resources Institute.
Ding, Z., Zheng, H., Wang, J., O'Connor, P., Li, C., Chen, X., Li, R., & Ouyang, Z. (2022). Integrating top-down and bottom-up approaches improves practicality and efficiency of large-scale ecological restoration planning: Insights from a social-ecological system. Engineering, https://doi.org/10.1016/j.eng.2022.08.008
Edwards, D. P., Gilroy, J. J., Woodcock, P., Edwards, F. A., Larsen, T. H., Andrews, D. J. R., Derhé, M. A., Docherty, T. D. S., Hsu, W. W., Mitchell, S. L., Ota, T., Williams, L. J., Laurance, W. F., Hamer, K. C., & Wilcove, D. S. (2014). Land-sharing versus land-sparing logging: Reconciling timber extraction with biodiversity conservation. Global Change Biology, 20, 183-191.
Edwards, D. P., Tobias, J. A., Sheil, D., Meijaard, E., & Laurance, W. F. (2014). Maintaining ecosystem function and services in logged tropical forests. Trends in Ecology & Evolution, 29, 511-520.
Erbaugh, J. T., Pradhan, N., Adams, J., Oldekop, J. A., Agrawal, A., Brockington, D., Pritchard, R., & Chhatre, A. (2020). Global forest restoration and the importance of prioritizing local communities. Nature Ecology & Evolution, 4, 1472-1476.
European Commission. Joint Research Centre. (2016). Operating procedure for the production of the global human settlement layer from Landsat data of the epochs 1975, 1990, 2000, and 2014. Publications Office of the European Union.
Fleischman, F., Coleman, E., Fischer, H., Kashwan, P., Pfeifer, M., Ramprasad, V., Rodriguez Solorzano, C., & Veldman, J. W. (2022). Restoration prioritization must be informed by marginalized people. Nature, 607, E5-E6.
Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., Peres, C. A., Bradshaw, C. J. A., Laurance, W. F., Lovejoy, T. E., & Sodhi, N. S. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 478, 378-381.
Gonzalez, A. M., Espejo, N., Armenteras, D., Hobson, K. A., Kardynal, K. J., Mitchell, G. W., Mahony, N., Bishop, C. A., Negret, P. J., & Wilson, S. (2023). Habitat protection and restoration: Win-win opportunities for migratory birds in the Northern Andes. Perspectives in Ecology and Conservation, 21(1), 33-40. https://doi.org/10.1016/j.pecon.2023.02.001
Gopalakrishna, T., Lomax, G., Aguirre-Gutiérrez, J., Bauman, D., Roy, P. S., Joshi, P. K., & Malhi, Y. (2022). Existing land uses constrain climate change mitigation potential of forest restoration in India. Conservation Letters, 15, e12867. https://doi.org/10.1111/conl.12867
Grantham, H. S., Duncan, A., Evans, T. D., Jones, K. R., Beyer, H. L., Schuster, R., Walston, J., Ray, J. C., Robinson, J. G., Callow, M., Clements, T., Costa, H. M., Degemmis, A., Elsen, P. R., Ervin, J., Franco, P., Goldman, E., Goetz, S., Hansen, A., … Watson, J. E. M. (2020). Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nature Communications, 11, 5978.
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., … Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 114, 11645-11650.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342, 850-853.
Harrison, R. D., Swinfield, T., Ayat, A., Dewi, S., Silalahi, M., & Heriansyah, I. (2020). Restoration concessions: A second lease on life for beleaguered tropical forests? Frontiers in Ecology and the Environment, 18, 567-575.
Hodgson, J. A., Moilanen, A., Wintle, B. A., & Thomas, C. D. (2011). Habitat area, quality and connectivity: Striking the balance for efficient conservation: Area, quality and connectivity. Journal of Applied Ecology, 48, 148-152.
Intergovernmental Panel on Climate Change. (2022). Climate Change and Land: IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (1st ed.). Cambridge University Press.
Jakovac, C. C., Peña-Claros, M., Kuyper, T. W., & Bongers, F. (2015). Loss of secondary-forest resilience by land-use intensification in the Amazon. Journal of Ecology, 103, 67-77.
Koch, A., & Kaplan, J. O. (2022). Tropical forest restoration under future climate change. Nature Climate Change, 12, 279-283.
Laurance, W. F., Lovejoy, T. E., Vasconcelos, H. L., Bruna, E. M., Didham, R. K., Stouffer, P. C., Gascon, C., Bierregaard, R. O., Laurance, S. G., & Sampaio, E. (2002). Ecosystem decay of Amazonian forest fragments: A 22-year investigation. Conservation Biology, 16, 605-618.
Lesiv, M., Schepaschenko, D., Buchhorn, M., See, L., Dürauer, M., Georgieva, I., Jung, M., Hofhansl, F., Schulze, K., Bilous, A., Blyshchyk, V., Mukhortova, L., Brenes, C. L. M., Krivobokov, L., Ntie, S., Tsogt, K., Pietsch, S. A., Tikhonova, E., Kim, M., … Fritz, S. (2022). Global forest management data for 2015 at a 100 m resolution. Scientific Data, 9, 199.
Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A., & Koch, A. (2019). Restoring natural forests is the best way to remove atmospheric carbon. Nature, 568, 25-28.
Mesa Nacional de Restauración del Paisaje Forestal de Guatemala. (2018). Oportunidades de restauración del paisaje forestal en Guatemala. IUCN.
Morán-Ordóñez, A., Hermoso, V., & Martínez-Salinas, A. (2022). Multi-objective forest restoration planning in Costa Rica: Balancing landscape connectivity and ecosystem service provisioning with sustainable development. Journal of Environmental Management, 310, 114717.
Paise, G., Vieira, E. M., & Prado, P. I. (2020). Small mammals respond to extreme habitat fragmentation in the Brazilian Atlantic Forest according to the landscape continuum model. Mammal Research, 65, 309-322.
Roe, S., Streck, C., Obersteiner, M., Frank, S., Griscom, B., Drouet, L., Fricko, O., Gusti, M., Harris, N., Hasegawa, T., Hausfather, Z., Havlík, P., House, J., Nabuurs, G.-J., Popp, A., Sánchez, M. J. S., Sanderman, J., Smith, P., Stehfest, E., & Lawrence, D. (2019). Contribution of the land sector to a 1.5°C world. Nature Climate Change, 9, 817-828.
Rohatyn, S., Yakir, D., Rotenberg, E., & Carmel, Y. (2022). Limited climate change mitigation potential through forestation of the vast dryland regions. Science, 377, 1436-1439.
Schultz, B., Brockington, D., Coleman, E. A., Djenontin, I., Fischer, H. W., Fleischman, F., Kashwan, P., Marquardt, K., Pfeifer, M., Pritchard, R., & Ramprasad, V. (2022). Recognizing the equity implications of restoration priority maps. Environmental Research Letters, 17, 114019.
Smith, C. C., Healey, J. R., Berenguer, E., Young, P. J., Taylor, B., Elias, F., Espírito-Santo, F., & Barlow, J. (2021). Old-growth forest loss and secondary forest recovery across Amazonian countries. Environmental Research Letters, 16, 085009.
Stanturf, J. A., Kleine, M., Mansourian, S., Parrotta, J., Madsen, P., Kant, P., Burns, J., & Bolte, A. (2019). Implementing forest landscape restoration under the Bonn Challenge: A systematic approach. Annals of Forest Science, 76, 50.
Strassburg, B. B. N., Beyer, H. L., Crouzeilles, R., Iribarrem, A., Barros, F., De Siqueira, M. F., Sánchez-Tapia, A., Balmford, A., Sansevero, J. B. B., Brancalion, P. H. S., Broadbent, E. N., Chazdon, R. L., Filho, A. O., Gardner, T. A., Gordon, A., Latawiec, A., Loyola, R., Metzger, J. P., Mills, M., … Uriarte, M. (2019). Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nature Ecology & Evolution, 3, 62-70.
Tuinenburg, O. A., Bosmans, J. H. C., & Staal, A. (2020). Global priority areas for ecosystem restoration. Nature, 17, 724-729.
Tuinenburg, O. A., Bosmans, J. H. C., & Staal, A. (2022). The global potential of forest restoration for drought mitigation. Environmental Research Letters, 17, 034045.
Watson, J. E. M., Iwamura, T., & Butt, N. (2013). Mapping vulnerability and conservation adaptation strategies under climate change. Nature Climate Change, 3, 989-994.
Watson, J. E. M., Iwamura, T., & Butt, N. (2022). The global potential for increased storage of carbon on land. Proceedings of the National Academy of Sciences of the United States of America, 119(23), e2111312119.
Wills, A. R., Shirima, D. D., Villemaire-Côté, O., Platts, P. J., Knight, S. J., Loveridge, R., Seki, H., Waite, C. E., Munishi, P. K. T., Lyatuu, H., Bernal, B., Pfeifer, M., & Marshall, A. R. (2023). A practice-led assessment of landscape restoration potential in a biodiversity hotspot. Philosophical Transactions of the Royal Society B: Biological Sciences, 378, 20210070.

Auteurs

Tim Rayden (T)

Wildlife Conservation Society, Bronx, New York, USA.

Kendall R Jones (KR)

Wildlife Conservation Society, Bronx, New York, USA.

Kemen Austin (K)

Wildlife Conservation Society, Bronx, New York, USA.

Jeremy Radachowsky (J)

Wildlife Conservation Society, Bronx, New York, USA.

Articles similaires

Humans Climate Change Health Personnel Surveys and Questionnaires Medical Oncology
Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests

Classifications MeSH